
AWS Key Management Service
Developer Guide

AWS Key Management Service Developer Guide

AWS Key Management Service: Developer Guide
Copyright © 2020 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not
Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or
discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may
or may not be affiliated with, connected to, or sponsored by Amazon.

AWS Key Management Service Developer Guide

Table of Contents
What is AWS Key Management Service? 1

Concepts 2
Customer Master Keys (CMKs) ... 2
Data Keys 4
Data Key Pairs ... 6
Key Spec 10
Key Usage 11
Envelope Encryption 11
Encryption Context ... 12
Key Policies ... 15
Grants 16
Grant Tokens 16
Auditing CMK Usage 16
Key Management Infrastructure 16

Getting Started 17
Creating Keys 17

Creating Symmetric CMKs 17
Creating Asymmetric CMKs 20

Viewing Keys 22
Viewing CMKs in the Console 23
Viewing CMKs with the API ... 29
Finding the Key ID and ARN 32
Identifying Symmetric and Asymmetric CMKs 33

Editing Keys 36
Editing CMKs (Console) ... 36
Editing CMKs (KMS API) ... 38

Tagging Keys 39
Managing CMK Tags (Console) ... 40
Managing CMK Tags (KMS API) ... 40

Enabling and Disabling Keys 41
Enabling and Disabling CMKs (Console) ... 42
Enabling and Disabling CMKs (KMS API) ... 42

Downloading Public Keys 43
Special Considerations for Downloading Public Keys 43
Downloading a Public Key (Console) ... 44
Downloading a Public Key (KMS API) ... 44

Authentication and Access Control ... 46
Authentication 46
Access Control ... 47
Overview of Managing Access 47

AWS KMS Resources and Operations 48
Managing Access to AWS KMS CMKs 48
Specifying Permissions in a Policy 49
Specifying Conditions in a Policy 50

Using Key Policies ... 50
Overview of Key Policies ... 50
Default Key Policy 51
Example Key Policy 58
Viewing a Key Policy 61
Changing a Key Policy 64
Keeping Key Policies Up to Date 66

Using IAM Policies ... 67
Overview of IAM Policies ... 68
Permissions Required to Use the AWS KMS Console 68

iii

AWS Key Management Service Developer Guide

AWS Managed (Predefined) Policies for AWS KMS 69
Customer Managed Policy Examples 69

Allowing Cross-Account Access to a CMK 71
Step 1: Add a Key Policy Statement in the Local Account 72
Step 2: Add IAM Policies in the External Account 73
Creating CMKs that Other Accounts Can Use 74
Using External CMKs with AWS Services 76

AWS KMS API Permissions Reference 76
Using Policy Conditions 86

AWS Global Condition Keys 86
AWS KMS Condition Keys 88

Using Grants 115
Create a Grant 115
Grants for Symmetric and Asymmetric CMKs 116
Grant Constraints ... 116
Authorizing CreateGrant in a Key Policy 117
Granting CreateGrant Permission 117

Using Service-Linked Roles 117
Service-Linked Role Permissions for AWS KMS Custom Key Stores 118

Determining Access 118
Examining the Key Policy 119
Examining IAM Policies ... 121
Examining Grants 122
Troubleshooting Key Access 123

Using Symmetric and Asymmetric Keys 129
About Symmetric and Asymmetric CMKs 130

Symmetric Customer Master Keys 130
Asymmetric Customer Master Keys 130

How to Choose Your CMK Configuration 131
Selecting the Key Usage 132
Selecting the Key Spec 133

Viewing the Cryptographic Configuration of CMKs 137
Comparing Symmetric and Asymmetric CMKs 138

Rotating Keys 142
How Automatic Key Rotation Works 143
How to Enable and Disable Automatic Key Rotation 144

Enabling and Disabling Key Rotation (Console) ... 144
Enabling and Disabling Key Rotation (KMS API) ... 144

Rotating Keys Manually ... 145
Importing Key Material ... 147

About Imported Key Material ... 147
How To Import Key Material ... 148
How to Reimport Key Material ... 148
How to Identify CMKs with Imported Key Material ... 149

To identify the value of the Origin property of CMKs (Console) ... 149
To identify the value of the Origin property of CMKs (KMS API) ... 149

Step 1: Create a CMK with No Key Material ... 150
Creating a CMK with No Key Material (Console) ... 150
Creating a CMK with No Key Material (KMS API) ... 151

Step 2: Download the Public Key and Import Token 152
Downloading the Public Key and Import Token (Console) ... 153
Downloading the Public Key and Import Token (KMS API) ... 154

Step 3: Encrypt the Key Material ... 155
Example: Encrypt Key Material with OpenSSL 155

Step 4: Import the Key Material ... 156
Import Key Material (Console) ... 156
Import Key Material (KMS API) ... 157

iv

AWS Key Management Service Developer Guide

Deleting Key Material ... 157
How Deleting Key Material Affects AWS Services Integrated With AWS KMS 158
Delete Key Material (Console) ... 158
Delete Key Material (KMS API) ... 159

Deleting Customer Master Keys 160
How Deleting CMKs Works 160

Deleting Asymmetric CMKs 161
How Deleting CMKs Affects Integrated AWS Services 161

Scheduling and Canceling Key Deletion 162
Using the AWS Management Console 162
Using the AWS CLI ... 163
Using the AWS SDK for Java 163

Adding Permission to Schedule and Cancel Key Deletion 164
Using the AWS Management Console 164
Using the AWS CLI ... 165

Creating an Amazon CloudWatch Alarm 165
Requirements for a CloudWatch Alarm 166
Create the CloudWatch Alarm 166

Determining Past Usage of a CMK 169
Examining CMK Permissions to Determine the Scope of Potential Usage 169
Examining AWS CloudTrail Logs to Determine Actual Usage 169

Using a Custom Key Store 172
What is a Custom Key Store? 174

AWS KMS Custom Key Store 174
AWS CloudHSM Cluster ... 175
kmsuser Crypto User ... 175
CMKs in a Custom Key Store 176

Controlling Access to Your Custom Key Store 176
Authorizing Custom Key Store Managers and Users ... 176
Authorizing AWS KMS to Manage AWS CloudHSM and Amazon EC2 Resources 177

Creating a Custom Key Store 178
Assemble the Prerequisites ... 179
Create a Custom Key Store (Console) ... 180
Create a Custom Key Store (API) ... 181

Managing a Custom Key Store 182
Viewing a Custom Key Store 182
Editing Custom Key Store Settings 184
Connecting and Disconnecting a Custom Key Store 186
Deleting a Custom Key Store 190

Managing CMKs in a Custom Key Store 192
Creating CMKs in a Custom Key Store 192
Viewing CMKs in a Custom Key Store 196
Using CMKs in a Custom Key Store 197
Finding CMKs and Key Material ... 198
Scheduling Deletion of CMKs from a Custom Key Store 202

Troubleshooting a Custom Key Store 202
How to Fix Unavailable CMKs 203
How to Fix a Failing CMK 203
How to Fix a Connection Failure 204
How to Fix Invalid kmsuser Credentials ... 205
How to Delete Orphaned Key Material ... 206
How to Recover Deleted Key Material for a CMK 207
How to Log in as kmsuser . 208

Using a VPC Endpoint ... 211
Create a VPC Endpoint ... 212

Creating a VPC Endpoint (Console) ... 212
Creating an AWS KMS VPC Endpoint (AWS CLI) ... 213

v

AWS Key Management Service Developer Guide

Connecting to a VPC Endpoint ... 214
Using a VPC Endpoint in a Policy Statement 215
Audit the CMK Use for your VPC 217

Using Hybrid Post-Quantum TLS 218
About Post-Quantum TLS 219
How to Use It ... 219
How to Configure It ... 220
How to Test It ... 221
Learn More 222

How Key State Affects Use of a Customer Master Key 223
How AWS Services use AWS KMS 228

AWS CloudTrail .. 228
Understanding When Your CMK is Used 228
Understanding How Often Your CMK is Used 232

Amazon DynamoDB 233
Using CMKs and Data Keys 233
Authorizing Use of Your CMK 235
DynamoDB Encryption Context ... 239
Monitoring DynamoDB Interaction with AWS KMS 239

Amazon Elastic Block Store (Amazon EBS) ... 243
Amazon EBS Encryption 243
Using CMKs and Data Keys 243
Amazon EBS Encryption Context ... 244
Detecting Amazon EBS Failures 244
Using AWS CloudFormation to Create Encrypted Amazon EBS Volumes 245

Amazon Elastic Transcoder 245
Encrypting the input file 245
Decrypting the input file 246
Encrypting the output file 247
HLS Content Protection 248
Elastic Transcoder Encryption Context ... 248

Amazon EMR 249
Encrypting Data on the EMR File System (EMRFS) ... 249
Encrypting Data on the Storage Volumes of Cluster Nodes 251
Encryption Context ... 252

Amazon Redshift ... 253
Amazon Redshift Encryption 253
Encryption Context ... 253

Amazon Relational Database Service (Amazon RDS) 254
Amazon RDS Encryption Context ... 254

AWS Secrets Manager 255
Protecting the Secret Value 255
Encrypting and Decrypting Secrets ... 255
Using Your AWS KMS CMK 257
Authorizing Use of the CMK 258
Secrets Manager Encryption Context ... 259
Monitoring Secrets Manager Interaction with AWS KMS 260

Amazon Simple Email Service (Amazon SES) ... 262
Overview of Amazon SES Encryption Using AWS KMS 263
Amazon SES Encryption Context ... 263
Giving Amazon SES Permission to Use Your AWS KMS Customer Master Key (CMK) 264
Getting and Decrypting Email Messages 264

Amazon Simple Storage Service (Amazon S3) ... 265
Server-Side Encryption: Using SSE-KMS 265
Using the Amazon S3 Encryption Client 266
Encryption Context ... 266

AWS Systems Manager Parameter Store 267

vi

AWS Key Management Service Developer Guide

Protecting Standard Secure String Parameters ... 267
Protecting Advanced Secure String Parameters ... 269
Setting Permissions to Encrypt and Decrypt Parameter Values 272
Parameter Store Encryption Context ... 274
Troubleshooting CMK Issues in Parameter Store 275

Amazon WorkMail ... 276
Amazon WorkMail Overview 276
Amazon WorkMail Encryption 276
Authorizing Use of the CMK 279
Amazon WorkMail Encryption Context ... 280
Monitoring Amazon WorkMail Interaction with AWS KMS 281

Amazon WorkSpaces 282
Overview of Amazon WorkSpaces Encryption Using AWS KMS 283
Amazon WorkSpaces Encryption Context ... 284
Giving Amazon WorkSpaces Permission to Use A CMK On Your Behalf ... 284

Monitoring Customer Master Keys 286
Monitoring Tools ... 286

Automated Tools ... 286
Manual Tools ... 287

Monitoring with CloudWatch 287
Metrics and Dimensions 288
Creating Alarms 289
AWS KMS Events 290

Logging AWS KMS API Calls with AWS CloudTrail .. 293
AWS KMS Information in CloudTrail .. 293
Excluding AWS KMS Events from a Trail .. 294
Understanding AWS KMS Log File Entries ... 294

CreateAlias ... 295
CreateGrant 296
CreateKey 297
Decrypt 298
DeleteAlias ... 298
DescribeKey 299
DisableKey 300
EnableKey 301
Encrypt 302
GenerateDataKey 302
GenerateDataKeyWithoutPlaintext ... 303
GenerateRandom 304
GetKeyPolicy 304
ListAliases 305
ListGrants 306
ReEncrypt 306
Amazon EC2 Example One 307
Amazon EC2 Example Two 309

Programming the AWS KMS API ... 314
Creating a Client ... 314
Working With Keys 315

Creating a Customer Master Key 315
Generating a Data Key 317
Viewing a Custom Master Key 319
Getting Key IDs and Key ARNs of Customer Master Keys 320
Enabling Customer Master Keys 321
Disabling Customer Master Keys 323

Encrypting and Decrypting Data Keys 324
Encrypting a Data Key 325
Decrypting a Data Key 327

vii

AWS Key Management Service Developer Guide

Re-Encrypting a Data Key Under a Different Customer Master Key 328
Working with Key Policies ... 330

Listing Key Policy Names 330
Getting a Key Policy 332
Setting a Key Policy 334

Working with Grants 337
Creating a Grant 337
Viewing a Grant 339
Retiring a Grant 341
Revoking a Grant 342

Working with Aliases 344
Creating an Alias ... 345
Listing Aliases 346
Updating an Alias ... 349
Deleting an Alias ... 351

Quotas 353
Resource Quotas 353

Customer Master Keys (CMKs): 10,000 354
Aliases: 10,000 354
Grants per CMK: 10,000 354
Grants for a Given Principal per CMK: 500 354
Key Policy Document Size: 32 KB 355

Request Quotas 355
Applying Request Quotas 356
Shared Quotas for Cryptographic Operations 356
API Requests Made on Your Behalf ... 356
Cross-Account Requests ... 357
Custom Key Store Quotas 357
Request Quotas for Each AWS KMS API Operation 357

Document History 360
Recent Updates 360
Earlier Updates 361

viii

AWS Key Management Service Developer Guide

What is AWS Key Management
Service?

AWS Key Management Service (AWS KMS) is a managed service that makes it easy for you to create and
control the encryption keys used to encrypt your data. The customer master keys that you create in AWS
KMS are protected by hardware security modules (HSMs). Our HSMs are validated by the FIPS 140-2
Cryptographic Module Validation Program except in the China (Beijing) and China (Ningxia) Regions.

AWS KMS is integrated with most other AWS services that encrypt your data with encryption keys that
you manage. AWS KMS is also integrated with AWS CloudTrail to provide encryption key usage logs to
help meet your auditing, regulatory and compliance needs.

You can perform the following management actions on your AWS KMS master keys:

• Create, describe, and list master keys

• Enable and disable master keys

• Create and view grants and access control policies for your master keys

• Enable and disable automatic rotation of the cryptographic material in a master key

• Import cryptographic material into an AWS KMS master key

• Tag your master keys for easier identification, categorizing, and tracking

• Create, delete, list, and update aliases, which are friendly names associated with your master keys

• Delete master keys to complete the key lifecycle

With AWS KMS you can also perform the following cryptographic functions using master keys:

• Encrypt, decrypt, and re-encrypt data

• Generate data encryption keys that you can export from the service in plaintext or encrypted under a
master key that doesn't leave the service

• Generate random numbers suitable for cryptographic applications

By using AWS KMS, you gain more control over access to data you encrypt. You can use the key
management and cryptographic features directly in your applications or through AWS services that
are integrated with AWS KMS. Whether you are writing applications for AWS or using AWS services,
AWS KMS enables you to maintain control over who can use your master keys and gain access to your
encrypted data.

AWS KMS is integrated with AWS CloudTrail, a service that delivers log files to an Amazon S3 bucket that
you designate. By using CloudTrail you can monitor and investigate how and when your master keys have
been used and by whom.

Learn More

• For a more detailed introduction to AWS KMS, see AWS KMS Concepts (p. 2).

• For information about the AWS KMS API, see the AWS Key Management Service API Reference.

1

https://csrc.nist.gov/projects/cryptographic-module-validation-program/Certificate/3139
https://csrc.nist.gov/projects/cryptographic-module-validation-program/Certificate/3139
https://aws.amazon.com/kms/features/#AWS_Service_Integration
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/kms/latest/APIReference/

AWS Key Management Service Developer Guide
Concepts

• For detailed technical information about how AWS KMS uses cryptography and secures master keys,
see the AWS Key Management Service Cryptographic Details whitepaper. This whitepaper does not
describe how AWS KMS works in the China (Beijing) and China (Ningxia) Regions.

• For help with questions about AWS KMS, see the AWS Key Management Service Discussion Forum.

AWS KMS in AWS Regions

The AWS Regions in which AWS KMS is supported are listed in AWS Key Management Service Endpoints
and Quotas. If an AWS KMS feature is not supported in an AWS Region that AWS KMS supports, the
regional difference is described in the topic about the feature.

AWS KMS Pricing

As with other AWS products, there are no contracts or minimum commitments for using AWS KMS. For
more information about AWS KMS pricing, see AWS Key Management Service Pricing.

Service Level Agreement

AWS Key Management Service is backed by a service level agreement that defines our service availability
policy.

AWS Key Management Service Concepts
Learn the basic terms and concepts in AWS Key Management Service (AWS KMS) and how they work
together to help protect your data.

Topics
• Customer Master Keys (CMKs) (p. 2)
• Data Keys (p. 4)
• Data Key Pairs (p. 6)
• Key Spec (p. 10)
• Key Usage (p. 11)
• Envelope Encryption (p. 11)
• Encryption Context (p. 12)
• Key Policies (p. 15)
• Grants (p. 16)
• Grant Tokens (p. 16)
• Auditing CMK Usage (p. 16)
• Key Management Infrastructure (p. 16)

Customer Master Keys (CMKs)
Customer master keys are the primary resources in AWS KMS.

A customer master key (CMK) is a logical representation of a master key. The CMK includes metadata,
such as the key ID, creation date, description, and key state. The CMK also contains the key material used
to encrypt and decrypt data.

AWS KMS supports symmetric and asymmetric CMKs. A symmetric CMK represents a 256-bit key that
is used for encryption and decryption. An asymmetric CMK represents an RSA key pair that is used for

2

https://d0.awsstatic.com/whitepapers/KMS-Cryptographic-Details.pdf
https://forums.aws.amazon.com/forum.jspa?forumID=182
https://docs.aws.amazon.com/general/latest/gr/kms.html
https://docs.aws.amazon.com/general/latest/gr/kms.html
https://aws.amazon.com/kms/pricing/
https://aws.amazon.com/kms/sla/

AWS Key Management Service Developer Guide
Customer Master Keys (CMKs)

encryption and decryption or signing and verification (but not both), or an elliptic curve (ECC) key pair
that is used for signing and verification. For detailed information about symmetric and asymmetric
CMKs, see Using Symmetric and Asymmetric Keys (p. 129).

CMKs are created in AWS KMS. Symmetric CMKs and the private keys of asymmetric CMKs never leave
AWS KMS unencrypted. To manage your CMK, you can use the AWS Management Console or the AWS
KMS API. To use a CMK in cryptographic operations, you must use the AWS KMS API. This strategy differs
from data keys (p. 4). AWS KMS does not store, manage, or track your data keys. You must use them
outside of AWS KMS.

By default, AWS KMS creates the key material for a CMK. You cannot extract, export, view, or manage
this key material. Also, you cannot delete this key material; you must delete the CMK (p. 160). However,
you can import your own key material (p. 147) into a CMK or create the key material for a CMK in the
AWS CloudHSM cluster associated with an AWS KMS custom key store (p. 172).

For information about creating and managing CMKs, see Getting Started (p. 17). For information
about using CMKs, see the AWS Key Management Service API Reference.

There are three types of CMKs in AWS accounts: customer managed CMKs, AWS managed CMKs, and
AWS owned CMKs.

Type of CMK Can View CMK
Metadata

Can Manage CMK Used Only for My
AWS Account

Customer
managed
CMK (p. 3)

Yes Yes Yes

AWS managed
CMK (p. 4)

Yes No Yes

AWS owned
CMK (p. 4)

No No No

To distinguish customer managed CMKs from AWS managed CMKs, use the KeyManager field in the
DescribeKey operation response. For customer managed CMKs, the KeyManager value is Customer. For
AWS managed CMKs, the KeyManager value is AWS.

AWS services that integrate with AWS KMS (p. 228) differ in their support for CMKs. Some AWS services
encrypt your data by default with an AWS owned CMK or an AWS managed CMK. Other AWS services
offer to encrypt your data under a customer managed CMK that you choose. And other AWS services
support all types of CMKs to allow you the ease of an AWS owned CMK, the visibility of an AWS managed
CMK, or the control of a customer managed CMK.

Customer Managed CMKs
Customer managed CMKs are CMKs in your AWS account that you create, own, and manage. You have
full control over these CMKs, including establishing and maintaining their key policies, IAM policies, and
grants (p. 46), enabling and disabling (p. 41) them, rotating their cryptographic material (p. 142),
adding tags (p. 39), creating aliases (p. 344) that refer to the CMK, and scheduling the CMKs for
deletion (p. 160).

Customer managed CMKs appear on the Customer managed keys page of the AWS Management
Console for AWS KMS. To definitively identify a customer managed CMK, use the DescribeKey operation.
For customer managed CMKs, the value of the KeyManager field of the DescribeKey response is
CUSTOMER.

3

https://docs.aws.amazon.com/kms/latest/APIReference/
https://docs.aws.amazon.com/kms/latest/APIReference/
https://docs.aws.amazon.com/kms/latest/APIReference/
https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html

AWS Key Management Service Developer Guide
Data Keys

You can use your customer managed CMKs in cryptographic operations and audit their use in AWS
CloudTrail logs. In addition, many AWS services that integrate with AWS KMS (p. 228) let you specify a
customer managed CMK to protect the data that they store and manage for you.

Customer managed CMKs incur a monthly fee and a fee for use in excess of the free tier. They are
counted against the AWS KMS limits (p. 353) for your account. For details, see AWS Key Management
Service Pricing and Quotas (p. 353).

AWS Managed CMKs
AWS managed CMKs are CMKs in your account that are created, managed, and used on your behalf by an
AWS service that is integrated with AWS KMS.

You can view the AWS managed CMKs (p. 22) in your account, view their key policies (p. 61), and
audit their use (p. 293) in AWS CloudTrail logs. However, you cannot manage these CMKs or change
their key policies. And, you cannot use AWS managed CMKs in cryptographic operations directly; the
service that creates them uses them on your behalf.

AWS managed CMKs appear on the AWS managed keys page of the AWS Management Console for
AWS KMS. You can also identify most AWS managed CMKs by their aliases, which have the format
aws/service-name, such as aws/redshift. To definitively identify an AWS managed CMK, use
the DescribeKey operation. For AWS managed CMKs, the value of the KeyManager field of the
DescribeKey response is AWS.

You do not pay a monthly fee for AWS managed CMKs. They can be subject to fees for use in excess of
the free tier, but some AWS services cover these costs for you. For details, see the encryption section
of the service documentation. AWS managed CMKs do not count against limits on the number of CMKs
in each Region of your account. But when they are used on behalf of a principal in your account, these
CMKs count against request rate limits. For details, see AWS Key Management Service Pricing and
Quotas (p. 353).

AWS Owned CMKs
AWS owned CMKs are not in your AWS account. They are part of a collection of CMKs that AWS owns and
manages for use in multiple AWS accounts. AWS services can use AWS owned CMKs to protect your data.

You cannot view, manage, or use AWS owned CMKs, or audit their use. However, you do not need to do
any work or change any programs to protect the keys that encrypt your data.

You are not charged a monthly fee or a usage fee for use of AWS owned CMKs and they do not count
against AWS KMS limits for your account.

Data Keys
Data keys are encryption keys that you can use to encrypt data, including large amounts of data and
other data encryption keys.

You can use AWS KMS customer master keys (p. 2) (CMKs) to generate, encrypt, and decrypt data
keys. However, AWS KMS does not store, manage, or track your data keys, or perform cryptographic
operations with data keys. You must use and manage data keys outside of AWS KMS.

Create a Data Key
To create a data key, call the GenerateDataKey operation. AWS KMS uses the CMK that you specify to
generate a data key. The operation returns a plaintext copy of the data key and a copy of the data key
encrypted under the CMK. The following image shows this operation.

4

https://aws.amazon.com/kms/pricing/
https://aws.amazon.com/kms/pricing/
https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html
https://aws.amazon.com/kms/pricing/
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html

AWS Key Management Service Developer Guide
Data Keys

AWS KMS also supports the GenerateDataKeyWithoutPlaintext operation, which returns only an
encrypted data key. When you need to use the data key, ask AWS KMS to decrypt it.

Encrypt Data with a Data Key

AWS KMS cannot use a data key to encrypt data. But you can use the data key outside of KMS, such as by
using OpenSSL or a cryptographic library like the AWS Encryption SDK.

After using the plaintext data key to encrypt data, remove it from memory as soon as possible. You can
safely store the encrypted data key with the encrypted data so it is available to decrypt the data.

5

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/

AWS Key Management Service Developer Guide
Data Key Pairs

Decrypt Data with a Data Key

To decrypt your data, pass the encrypted data key to the Decrypt operation. AWS KMS uses your CMK
to decrypt the data key and then it returns the plaintext data key. Use the plaintext data key to decrypt
your data and then remove the plaintext data key from memory as soon as possible.

The following diagram shows how to use the Decrypt operation to decrypt an encrypted data key.

Data Key Pairs
Data key pairs are asymmetric data keys that consist of a mathematically-related public key and private
key. They are designed to be used for client-side encryption and decryption or signing and verification
outside of AWS KMS.

Note
Asymmetric CMKs and asymmetric data key pairs are supported by AWS KMS only in the
following AWS Regions: US East (N. Virginia), US West (Oregon), Asia Pacific (Sydney), Asia
Pacific (Tokyo), and Europe (Ireland).

6

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html

AWS Key Management Service Developer Guide
Data Key Pairs

Unlike the data key pairs that tools like OpenSSL generate, AWS KMS protects the private key in each
data key pair under a symmetric CMK in AWS KMS that you specify. However, AWS KMS does not store,
manage, or track your data key pairs, or perform cryptographic operations with data key pairs. You must
use and manage data key pairs outside of AWS KMS.

AWS KMS supports the following types of data key pairs:

• RSA key pairs: RSA_2048, RSA_3072, and RSA_4096

• Elliptic curve key pairs, ECC_NIST_P256, ECC_NIST_P384, ECC_NIST_P521, and ECC_SECG_P256K1

The type of data key pair that you select usually depends on your use case or regulatory requirements.
Most certificates require RSA keys. Elliptic curve keys are often used for digital signatures.
ECC_SECG_P256K1 keys are commonly used for cryptocurrencies.

Create a Data Key Pair

To create a data key pair, call the GenerateDataKeyPair or GenerateDataKeyPairWithoutPlaintext
operations. Specify the symmetric CMK you want to use to encrypt the private key.

GenerateDataKeyPair returns a plaintext public key, a plaintext private key, and an encrypted private
key. Use this operation when you need a plaintext private key immediately, such as to generate a digital
signature.

GenerateDataKeyPairWithoutPlaintext returns a plaintext public key and an encrypted private
key, but not a plaintext private key. Use this operation when you don't need a plaintext private key
immediately, such as when you're encrypting with a public key. Later, when you need a plaintext private
key to decrypt the data, you can call the Decrypt operation.

The following image shows the GenerateDataKeyPair operation. The
GenerateDataKeyWithoutPlaintext operation omits the plaintext private key.

7

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyPair.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyPairWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html

AWS Key Management Service Developer Guide
Data Key Pairs

Encrypt Data with a Data Key Pair

When you encrypt with a data key pair, you use the public key of the pair to encrypt the data and the
private key of the same pair to decrypt the data. Typically, data key pairs are used when many parties
need to encrypt data that only the party that holds the private key can decrypt.

The parties with the public key use that key to encrypt data, as shown in the following diagram.

8

AWS Key Management Service Developer Guide
Data Key Pairs

Decrypt Data with a Data Key Pair
To decrypt your data, use the private key in the data key pair. For the operation to succeed, the public
and private keys must be from the same data key pair, and you must use the same encryption algorithm.

To decrypt the encrypted private key, pass it to the Decrypt operation. Use the plaintext private key to
decrypt the data. Then remove the plaintext private key from memory as soon as possible.

The following diagram shows how to use the private key in a data key pair to decrypt ciphertext.

Sign Messages with a Data Key Pair
To generate a cryptographic signature for a message, use the private key in the data key pair. Anyone
with the public key can use it to verify that the message was signed with your private key and that it has
not changed since it was signed.

If your private key is encrypted, pass the encrypted private key to the Decrypt operation. AWS KMS uses
your CMK to decrypt the data key and then it returns the plaintext private key. Use the plaintext private
key to generate the signature. Then remove the plaintext private key from memory as soon as possible.

To sign a message, create a message digest using a cryptographic hash function, such as the dgst
command in OpenSSL. Then, pass your plaintext private key to the signing algorithm. The result is a
signature that represents the contents of the message.

The following diagram shows how to use the private key in a data key pair to sign a message.

9

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://www.openssl.org/docs/man1.0.2/man1/openssl-dgst.html

AWS Key Management Service Developer Guide
Key Spec

Verify a Signature with a Data Key Pair
Anyone who has the public key in your data key pair can use it to verify the signature that you generated
with your private key. Verification confirms that an authorized user signed the message with the
specified private key and signing algorithm, and the message hasn't changed since it was signed.

To be successful, the party verifying the signature must generate the same type of digest, use the same
algorithm, and use the public key that corresponds to the private key used to sign the message.

The following diagram shows how to use the public key in a data key pair to verify a message signature.

Key Spec
The key spec is a CMK property that represents cryptographic configuration of the CMK. The key spec
determines whether the CMK is symmetric or asymmetric, the type of key material in the CMK, and the
encryption algorithms or signing algorithms you can use with the CMK.

Typically, the key spec that you choose for your CMK is based on your use case and regulatory
requirements. You choose the key spec when you create the CMK (p. 17), and you cannot change it. If
you've chosen the wrong key spec, delete the CMK (p. 160), and create a new one.

For a list of key specs and help with choosing a key spec, see Selecting the Key Spec (p. 133). To find
the key spec of a CMK, use the DescribeKey operation, or see the Cryptographic configuration section of
the detail page for a CMK in the AWS KMS console. For help, see Viewing Keys (p. 22).

Note
In AWS KMS API operations, the key spec for CMKs is known as the CustomerMasterKeySpec.
This distinguishes it from the key spec for data keys (KeySpec) and data key pairs
(KeyPairSpec), and the key spec used when wrapping key material for import
(WrappingKeySpec). Each key spec type has different values.

10

url-kms-api;API_DescribeKey.html

AWS Key Management Service Developer Guide
Key Usage

To limit the key specs that principals can use when creating CMKs, use the
kms:CustomerMasterKeySpec (p. 91) condition key. You can also use the
kms:CustomerMasterKeySpec condition key to allow principals to call AWS KMS operations for a
CMK based on its key spec. For example, you can deny permission to schedule deletion of CMK with an
RSA_4096 key spec.

Key Usage
Key usage is a CMK property that determines whether a CMK is used for encryption and decryption -or-
signing and verification. You cannot choose both. Using a CMK for more than one type of operations
makes the product of both operations more vulnerable to attack.

The key usage for symmetric CMKs is always encryption and decryption. The key usage for elliptic curve
(ECC) CMKs is always signing and verification. You only need to choose a key usage for RSA CMKs. You
choose the key usage when you create the CMK (p. 17), and you cannot change it. If you've chosen the
wrong key usage, delete the CMK (p. 160), and create a new one.

For choosing the key usage, see Selecting the Key Usage (p. 132). To find the key usage of a CMK, use
the DescribeKey operation, or see the Cryptographic configuration section of the detail page for a CMK
in the AWS KMS console. For help, see Viewing Keys (p. 22).

To allow principals to create CMKs only for signing and verification or only for encryption and
decryption, use the kms:CustomerMasterKeyUsage (p. 92) condition key. You can also use the
kms:CustomerMasterKeyUsage condition key to allow principals to call API operations for a CMK
based on its key usage. For example, you can allow permission to disable a CMK only if its key usage is
SIGN_VERIFY.

Envelope Encryption
When you encrypt your data, your data is protected, but you have to protect your encryption key. One
strategy is to encrypt it. Envelope encryption is the practice of encrypting plaintext data with a data key,
and then encrypting the data key under another key.

You can even encrypt the data encryption key under another encryption key, and encrypt that encryption
key under another encryption key. But, eventually, one key must remain in plaintext so you can decrypt
the keys and your data. This top-level plaintext key encryption key is known as the master key.

AWS KMS helps you to protect your master keys by storing and managing them securely. Master keys
stored in AWS KMS, known as customer master keys (p. 2) (CMKs), never leave the AWS KMS FIPS
validated hardware security modules unencrypted. To use an AWS KMS CMK, you must call AWS KMS.

11

url-kms-api;API_DescribeKey.html
https://csrc.nist.gov/projects/cryptographic-module-validation-program/Certificate/3139
https://csrc.nist.gov/projects/cryptographic-module-validation-program/Certificate/3139

AWS Key Management Service Developer Guide
Encryption Context

Envelope encryption offers several benefits:

• Protecting data keys

When you encrypt a data key, you don't have to worry about storing the encrypted data key, because
the data key is inherently protected by encryption. You can safely store the encrypted data key
alongside the encrypted data.

• Encrypting the same data under multiple master keys

Encryption operations can be time consuming, particularly when the data being encrypted are large
objects. Instead of re-encrypting raw data multiple times with different keys, you can re-encrypt only
the data keys that protect the raw data.

• Combining the strengths of multiple algorithms

In general, symmetric key algorithms are faster and produce smaller ciphertexts than public
key algorithms. But public key algorithms provide inherent separation of roles and easier key
management. Envelope encryption lets you combine the strengths of each strategy.

Encryption Context
All AWS KMS cryptographic operations (Encrypt, Decrypt, ReEncrypt, GenerateDataKey, and
GenerateDataKeyWithoutPlaintext) that use symmetric CMKs accept an encryption context, an
optional set of key–value pairs that can contain additional contextual information about the data. AWS
KMS uses the encryption context as additional authenticated data (AAD) to support authenticated
encryption.

You cannot specify an encryption context in a cryptographic operation with an asymmetric
CMK (p. 130). The standard asymmetric encryption algorithms that AWS KMS uses do not support an
encryption context.

When you include an encryption context in an encryption request, it is cryptographically bound to the
ciphertext such that the same encryption context is required to decrypt (or decrypt and re-encrypt) the
data. If the encryption context provided in the decryption request is not an exact, case-sensitive match,
the decrypt request fails. Only the order of the key-value pairs in the encryption context can vary.

The encryption context is not secret. It appears in plaintext in AWS CloudTrail Logs (p. 293) so you can
use it to identify and categorize your cryptographic operations.

An encryption context can consist of any keys and values. However, because it is not secret and not
encrypted, your encryption context should not include sensitive information. We recommend that your
encryption context describe the data being encrypted or decrypted. For example, when you encrypt a
file, you might use part of the file path as encryption context.

12

https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/crypto/latest/userguide/cryptography-concepts.html#term-aad
https://docs.aws.amazon.com/crypto/latest/userguide/cryptography-concepts.html#define-authenticated-encryption
https://docs.aws.amazon.com/crypto/latest/userguide/cryptography-concepts.html#define-authenticated-encryption

AWS Key Management Service Developer Guide
Encryption Context

The key and value in an encryption context pair must be simple literal strings. They cannot be integers or
objects, or any type that is not fully resolved. If you use a different type, such as an integer or float, AWS
KMS interprets it as a string.

"encryptionContext": {
 "department": "10103.0"
}

The encryption context key and value can include special characters, such as underscores (_), dashes (-),
slashes (/, \) and colons (:).

For example, Amazon Simple Storage Service (p. 266) (Amazon S3) uses an encryption context in which
the key is aws:s3:arn. The value is the S3 bucket path to the file that is being encrypted.

"encryptionContext": {
 "aws:s3:arn": "arn:aws:s3:::bucket_name/file_name"
}

You can also use the encryption context to refine or limit access to customer master keys (CMKs) in your
account. You can use the encryption context as a constraint in grants (p. 115) and as a condition in
policy statements (p. 86).

To learn how to use encryption context to protect the integrity of encrypted data, see the post
How to Protect the Integrity of Your Encrypted Data by Using AWS Key Management Service and
EncryptionContext on the AWS Security Blog.

More about encryption context.

Encryption Context in Policies

The encryption context is used primarily to verify integrity and authenticity. But you can also use the
encryption context to control access to symmetric customer master keys (CMKs) in key policies and IAM
policies.

The kms:EncryptionContext: (p. 96) and kms:EncryptionContextKeys (p. 96) condition keys allow
(or deny) a permission only when the request includes particular encryption context keys or key–value
pairs.

For example, the following key policy statement allows the RoleForExampleApp role to use the CMK in
Decrypt operations. It uses the kms:EncryptionContext: condition key to allow this permission only
when the encryption context in the request includes an AppName:ExampleApp encryption context pair.

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/RoleForExampleApp"
 },
 "Action": "kms:Decrypt",
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "kms:EncryptionContext:AppName": "ExampleApp"
 }
 }
}

For more information about these encryption context condition keys, see Using Policy Conditions with
AWS KMS (p. 86).

13

https://aws.amazon.com/blogs/security/how-to-protect-the-integrity-of-your-encrypted-data-by-using-aws-key-management-service-and-encryptioncontext/
https://aws.amazon.com/blogs/security/how-to-protect-the-integrity-of-your-encrypted-data-by-using-aws-key-management-service-and-encryptioncontext/

AWS Key Management Service Developer Guide
Encryption Context

Encryption Context in Grants

When you create a grant (p. 115), you can include grant constraints that allow access only when
a request includes a particular encryption context or encryption context keys. For details about
the EncryptionContextEquals and EncryptionContextSubset grant constraints, see Grant
Constraints (p. 116).

To specify an encryption context constraint in a grant for a symmetric CMK, use the Constraints
parameter in the CreateGrant operation. This example uses the AWS Command Line Interface, but you
can use any AWS SDK. The grant that this command creates gives the exampleUser permission to call
the Decrypt operation. But that permission is effective only when the encryption context in the Decrypt
request includes a "Department": "IT" encryption context pair.

$ aws kms create-grant \
 --key-id 1234abcd-12ab-34cd-56ef-1234567890ab \
 --grantee-principal arn:aws:iam::111122223333:user/exampleUser \
 --operations Decrypt \
 --retiring-principal arn:aws:iam::111122223333:role/adminRole \
 --constraints EncryptionContextSubset={Department=IT}

The resulting grant looks like the following one. Notice that the permission granted to exampleUser
is effective only when the Decrypt request includes the encryption context pair specified in the grant
constraint. To find the grants on a CMK, use the ListGrants operation.

$ aws kms list-grants --key-id 1234abcd-12ab-34cd-56ef-1234567890ab

{
 "Grants": [
 {
 "Name": "",
 "IssuingAccount": "arn:aws:iam::111122223333:root",
 "GrantId": "8c94d1f12f5e69f440bae30eaec9570bb1fb7358824f9ddfa1aa5a0dab1a59b2",
 "Operations": [
 "Decrypt"
],
 "GranteePrincipal": "arn:aws:iam::111122223333:user/exampleUser",
 "Constraints": {
 "EncryptionContextSubset": {
 "Department": "IT"
 }
 },
 "CreationDate": 1568565290.0,
 "KeyId": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "RetiringPrincipal": "arn:aws:iam::111122223333:role/adminRole"
 }
]
}

AWS services often use encryption context constraints in the grants that give them permission to
use CMKs in your AWS account. For example, Amazon DynamoDB uses a grant like the following
one to get permission to use the AWS managed CMK (p. 4) for DynamoDB in your account. The
EncryptionContextSubset grant constraint in this grant makes the permissions in the grant effective
only when the encryption context in the request includes "subscriberID": "111122223333" and
"tableName": "Services" pairs. This grant constraint means that the grant allows DynamoDB to use
the specified CMK only for a particular table in your AWS account.

To get this output, run the ListGrants operation on the AWS managed CMK for DynamoDB in your
account.

14

https://docs.aws.amazon.com/kms/latest/APIReference/API_GrantConstraints.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateGrant.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ListGrants.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ListGrants.html

AWS Key Management Service Developer Guide
Key Policies

$ aws kms list-grants --key-id 0987dcba-09fe-87dc-65ba-ab0987654321

{
 "Grants": [
 {
 "Operations": [
 "Decrypt",
 "Encrypt",
 "GenerateDataKey",
 "ReEncryptFrom",
 "ReEncryptTo",
 "RetireGrant",
 "DescribeKey"
],
 "IssuingAccount": "arn:aws:iam::111122223333:root",
 "Constraints": {
 "EncryptionContextSubset": {
 "aws:dynamodb:tableName": "Services",
 "aws:dynamodb:subscriberId": "111122223333"
 }
 },
 "CreationDate": 1518567315.0,
 "KeyId": "arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321",
 "GranteePrincipal": "dynamodb.us-west-2.amazonaws.com",
 "RetiringPrincipal": "dynamodb.us-west-2.amazonaws.com",
 "Name": "8276b9a6-6cf0-46f1-b2f0-7993a7f8c89a",
 "GrantId": "1667b97d27cf748cf05b487217dd4179526c949d14fb3903858e25193253fe59"
 }
]
}

Logging Encryption Context

AWS KMS uses AWS CloudTrail to log the encryption context so you can determine which CMKs and data
have been accessed. The log entry shows exactly which CMK was used to encrypt or decrypt specific data
referenced by the encryption context in the log entry.

Important
Because the encryption context is logged, it must not contain sensitive information.

Storing Encryption Context

To simplify use of any encryption context when you call the Decrypt or ReEncrypt operations, you can
store the encryption context alongside the encrypted data. We recommend that you store only enough
of the encryption context to help you create the full encryption context when you need it for encryption
or decryption.

For example, if the encryption context is the fully qualified path to a file, store only part of that path
with the encrypted file contents. Then, when you need the full encryption context, reconstruct it from
the stored fragment. If someone tampers with the file, such as renaming it or moving it to a different
location, the encryption context value changes and the decryption request fails.

Key Policies
When you create a CMK, you determine who can use and manage that CMK. These permissions are
contained in a document called the key policy. You can use the key policy to add, remove, or change
permissions at any time for a customer managed CMK. But you cannot edit the key policy for an AWS
managed CMK. For more information, see Authentication and Access Control for AWS KMS (p. 46).

15

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html

AWS Key Management Service Developer Guide
Grants

Grants
A grant is another mechanism for providing permissions. It's an alternative to key policies. Because
grants can be very specific, and are easy to create and revoke, they are often used to provide temporary
permissions or more granular permissions.

Grant Tokens
When you create a grant, the permissions specified in the grant might not take effect immediately due
to eventual consistency. If you need to mitigate the potential delay, use the grant token that you receive
in the response to your CreateGrant request. You can pass the grant token with some AWS KMS API
requests to make the permissions in the grant take effect immediately. The following AWS KMS API
operations accept grant tokens:

• CreateGrant
• Decrypt
• DescribeKey
• Encrypt
• GenerateDataKey
• GenerateDataKeyWithoutPlaintext
• ReEncrypt
• RetireGrant

A grant token is not a secret. The grant token contains information about who the grant is for and
therefore who can use it to cause the grant's permissions to take effect more quickly.

Auditing CMK Usage
You can use AWS CloudTrail to audit key usage. CloudTrail creates log files that contain a history of AWS
API calls and related events for your account. These log files include all AWS KMS API requests made with
the AWS Management Console, AWS SDKs, and command line tools. The log files also include requests
to AWS KMS that AWS services make on your behalf. You can use these log files to find important
information, including when the CMK was used, the operation that was requested, the identity of the
requester, and the source IP address. For more information, see Logging AWS KMS API Calls with AWS
CloudTrail (p. 293) and the AWS CloudTrail User Guide.

Key Management Infrastructure
A common practice in cryptography is to encrypt and decrypt with a publicly available and peer-
reviewed algorithm such as AES (Advanced Encryption Standard) and a secret key. One of the main
problems with cryptography is that it's very hard to keep a key secret. This is typically the job of a key
management infrastructure (KMI). AWS KMS operates the KMI for you. AWS KMS creates and securely
stores your master keys, called CMKs. For more information about how AWS KMS operates, see the AWS
Key Management Service Cryptographic Details whitepaper.

16

https://en.wikipedia.org/wiki/Eventual_consistency
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateGrant.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateGrant.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_RetireGrant.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://d0.awsstatic.com/whitepapers/KMS-Cryptographic-Details.pdf
https://d0.awsstatic.com/whitepapers/KMS-Cryptographic-Details.pdf

AWS Key Management Service Developer Guide
Creating Keys

Getting Started
You can use the AWS Management Console and AWS KMS API operations to create, view, edit, tag,
enable, disable, topics.

Topics
• Creating Keys (p. 17)
• Viewing Keys (p. 22)
• Editing Keys (p. 36)
• Tagging Keys (p. 39)
• Enabling and Disabling Keys (p. 41)
• Downloading Public Keys (p. 43)

Creating Keys
You can create symmetric and asymmetric customer master keys (p. 129) (CMKs) in the AWS
Management Console or by using the CreateKey operation. During this process, you determine the
cryptographic configuration of your CMK and the origin of its key material. You cannot change these
properties after the CMK is created. You also set the key policy for the CMK, which you can change at any
time.

If you are creating a CMK to encrypt data you store or manage in an AWS service, create a symmetric
CMK. AWS services that are integrated with AWS KMS do not support asymmetric CMKs. For help
deciding which type of CMK to create, see How to Choose Your CMK Configuration (p. 131).

Note
Asymmetric CMKs and asymmetric data key pairs are supported by AWS KMS only in the
following AWS Regions: US East (N. Virginia), US West (Oregon), Asia Pacific (Sydney), Asia
Pacific (Tokyo), and Europe (Ireland).

Learn More:

• For help creating a CMK with imported key material, see Create a Customer Master Key With No Key
Material (p. 150).

• For help creating a CMK in a custom key store, see Creating CMKs in a Custom Key Store (p. 192).
• For help determining whether an existing CMK is symmetric or asymmetric, see Identifying Symmetric

and Asymmetric CMKs (p. 33).
• To use your CMKs programmatically and in command line interface operations, you need a key ID or

key ARN. For detailed instructions, see Finding the Key ID and ARN (p. 32).

Topics
• Creating Symmetric CMKs (p. 17)
• Creating Asymmetric CMKs (p. 20)

Creating Symmetric CMKs
You can create symmetric CMKs (p. 130) in the AWS Management Console or by using the AWS KMS
API. Symmetric key encryption uses the same key to encrypt and decrypt data.

17

https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/kms/latest/APIReference/
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateKey.html

AWS Key Management Service Developer Guide
Creating Symmetric CMKs

Creating Symmetric CMKs (Console)

You can use the AWS Management Console to create customer master keys (CMKs).

1. Sign in to the AWS Management Console and open the AWS Key Management Service (AWS KMS)
console at https://console.aws.amazon.com/kms.

2. To change the AWS Region, use the Region selector in the upper-right corner of the page.

3. In the navigation pane, choose Customer managed keys.

4. Choose Create key.

5. To create a symmetric CMK, for Key type choose Symmetric.

For information about how to create an asymmetric CMK in the AWS KMS console, see Creating
Asymmetric CMKs (Console) (p. 20).

6. Choose Next.

7. Type an alias for the CMK. The alias name cannot begin with aws/. The aws/ prefix is reserved by
Amazon Web Services to represent AWS managed CMKs in your account.

An alias is a display name that you can use to identify the CMK. We recommend that you choose an
alias that indicates the type of data you plan to protect or the application you plan to use with the
CMK.

Aliases are required when you create a CMK in the AWS Management Console. They are optional
when you use the CreateKey operation.

8. (Optional) Type a description for the CMK.

Enter a description that explains the type of data you plan to protect or the application you plan to
use with the CMK. Don't use the description format that's used for AWS managed CMKs (p. 4). The
Default master key that protects my ... when no other key is defined description format is reserved for
AWS managed CMKs.

You can add a description now or update it any time unless the key state (p. 223) is Pending
Deletion. To add, change, or delete the description of an existing customer managed CMK, edit the
CMK (p. 36) in the AWS Management Console or use the UpdateKeyDescription operation.

9. Choose Next.

10. (Optional) Type a tag key and an optional tag value. To add more than one tag to the CMK, choose
Add tag.

When you add tags to your AWS resources, AWS generates a cost allocation report with usage and
costs aggregated by tags. For information about tagging CMKs, see Tagging Keys (p. 39).

11. Choose Next.

12. Select the IAM users and roles that can administer the CMK.

Note
IAM policies can give other IAM users and roles permission to manage the CMK.

13. (Optional) To prevent the selected IAM users and roles from deleting this CMK, in the Key deletion
section at the bottom of the page, clear the Allow key administrators to delete this key check box.

14. Choose Next.

15. Select the IAM users and roles that can use the CMK for cryptographic operations.

Note
The AWS account (root user) has full permissions by default. As a result, any IAM policies
can also give users and roles permission use the CMK for cryptographic operations.

16. (Optional) You can allow other AWS accounts to use this CMK for cryptographic operations. To do so,
in the Other AWS accounts section at the bottom of the page, choose Add another AWS account

18

https://console.aws.amazon.com/kms
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_UpdateKeyDescription.html

AWS Key Management Service Developer Guide
Creating Symmetric CMKs

and enter the AWS account identification number of an external account. To add multiple external
accounts, repeat this step.

Note
To allow principals in the external accounts to use the CMK, Administrators of the external
account must create IAM policies that provide these permissions. For more information, see
Allowing Users in Other Accounts to Use a CMK (p. 71).

17. Choose Next.
18. Review the key policy document that was created from your choices. You can edit it, too.
19. Choose Finish to create the CMK.

Creating Symmetric CMKs (KMS API)

You can use the CreateKey operation to create a new symmetric customer master key (CMK). These
examples use the AWS Command Line Interface (AWS CLI), but you can use any supported programming
language.

This operation has no required parameters. However, you might also want to use the Policy parameter
to specify a key policy. You can change the key policy (PutKeyPolicy) and add optional elements, such as
a description and tags at any time. Also, if you are creating a CMK for imported key material (p. 147) or
a CMK in a custom key store (p. 172), the Origin parameter is required.

The following is an example of a call to the CreateKey operation with no parameters. This command
uses all of the default values. It creates a symmetric CMK for encrypting and decrypting with key
material generated by AWS KMS.

$ aws kms create-key
{
 "KeyMetadata": {
 "Origin": "AWS_KMS",
 "KeyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "Description": "",
 "KeyManager": "CUSTOMER",
 "Enabled": true,
 "CustomerMasterKeySpec": "SYMMETRIC_DEFAULT",
 "KeyUsage": "ENCRYPT_DECRYPT",
 "KeyState": "Enabled",
 "CreationDate": 1502910355.475,
 "Arn": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "AWSAccountId": "111122223333"
 "EncryptionAlgorithms": [
 "SYMMETRIC_DEFAULT"
]
 }
}

If you do not specify a key policy for your new CMK, the default key policy (p. 51) that CreateKey
applies differs from the default key policy that the console applies when you use it to create a new CMK.

For example, this call to the GetKeyPolicy operation returns the key policy that CreateKey applies. It
gives the AWS account access to the CMK and allows it to create AWS Identity and Access Management
(IAM) policies for the CMK. For detailed information about IAM policies and key policies for CMKs, see
Authentication and Access Control for AWS KMS (p. 46)

$ aws kms get-key-policy --key-id 1234abcd-12ab-34cd-56ef-1234567890ab --policy-name
 default --output text
{
 "Version" : "2012-10-17",

19

https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateKey.html
https://aws.amazon.com/cli/
https://docs.aws.amazon.com/kms/latest/APIReference/API_PutKeyPolicy.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_TagResource.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetKeyPolicy.html

AWS Key Management Service Developer Guide
Creating Asymmetric CMKs

 "Id" : "key-default-1",
 "Statement" : [{
 "Sid" : "Enable IAM User Permissions",
 "Effect" : "Allow",
 "Principal" : {
 "AWS" : "arn:aws:iam::111122223333:root"
 },
 "Action" : "kms:*",
 "Resource" : "*"
 }]
}

Creating Asymmetric CMKs
You can create asymmetric CMKs (p. 130) in the AWS Management Console or by using the AWS KMS
API. An asymmetric CMK represents a public and private key pair that can be used for encryption or
signing.

Note
Asymmetric CMKs and asymmetric data key pairs are supported by AWS KMS only in the
following AWS Regions: US East (N. Virginia), US West (Oregon), Asia Pacific (Sydney), Asia
Pacific (Tokyo), and Europe (Ireland).

If you are creating a CMK to encrypt data that you store or manage in an AWS service, use a
symmetric CMK. AWS services that integrate with AWS KMS do not support asymmetric CMKs. For
help deciding whether to create a symmetric or asymmetric CMK, see How to Choose Your CMK
Configuration (p. 131).

Creating Asymmetric CMKs (Console)

You can use the AWS Management Console to create asymmetric customer master keys (CMKs). Each
asymmetric CMK represents a public and private key pair.

Note
Asymmetric CMKs and asymmetric data key pairs are supported by AWS KMS only in the
following AWS Regions: US East (N. Virginia), US West (Oregon), Asia Pacific (Sydney), Asia
Pacific (Tokyo), and Europe (Ireland).

1. Sign in to the AWS Management Console and open the AWS Key Management Service (AWS KMS)
console at https://console.aws.amazon.com/kms.

2. To change the AWS Region, use the Region selector in the upper-right corner of the page.
3. In the navigation pane, choose Customer managed keys.
4. Choose Create key.
5. To create an asymmetric CMK, in Key type, choose Asymmetric.

For information about how to create an symmetric CMK in the AWS KMS console, see Creating
Symmetric CMKs (Console) (p. 18).

6. To create an asymmetric CMK for public key encryption, in Key usage, choose Encrypt and decrypt.
Or, to create an asymmetric CMK for signing messages and verifying signatures, in Key usage,
choose Sign and verify.

For help choosing a key usage value, see Selecting the Key Usage (p. 132).
7. Select a specification (Key spec) for your asymmetric CMK.

Often the key spec that you select is determined by regulatory, security, or business requrirements.
It might also be influenced by the size of messages that you need to encrypt or sign. In general,
longer encryption keys are more resistant to brute-force attacks.

For help choosing a key spec, see Selecting the Key Spec (p. 133).

20

https://console.aws.amazon.com/kms

AWS Key Management Service Developer Guide
Creating Asymmetric CMKs

8. Choose Next.
9. Type an alias for the CMK. The alias name cannot begin with aws/. The aws/ prefix is reserved by

Amazon Web Services to represent AWS managed CMKs in your account.

An alias is a display name that you can use to identify the CMK. We recommend that you choose an
alias that indicates the type of data you plan to protect or the application you plan to use with the
CMK.

Aliases are required when you create a CMK in the AWS Management Console. They are optional
when you use the CreateKey operation.

10. (Optional) Type a description for the CMK.

Enter a description that explains the type of data you plan to protect or the application you plan to
use with the CMK. Don't use the description format that's used for AWS managed CMKs (p. 4). The
Default master key that protects my ... when no other key is defined description format is reserved for
AWS managed CMKs.

You can add a description now or update it any time unless the key state (p. 223) is Pending
Deletion. To add, change, or delete the description of an existing customer managed CMK, edit the
CMK (p. 36) in the AWS Management Console or use the UpdateKeyDescription operation.

11. (Optional) Type a tag key and an optional tag value. To add more than one tag to the CMK, choose
Add tag.

When you add tags to your AWS resources, AWS generates a cost allocation report with usage and
costs aggregated by tags. For information about tagging CMKs, see Tagging Keys (p. 39).

12. Choose Next.
13. Select the IAM users and roles that can administer the CMK.

Note
IAM policies can give other IAM users and roles permission to manage the CMK.

14. (Optional) To prevent the selected IAM users and roles from deleting this CMK, in the Key deletion
section at the bottom of the page, clear the Allow key administrators to delete this key check box.

15. Choose Next.
16. Select the IAM users and roles that can use the CMK for cryptographic operations.

Note
The AWS account (root user) has full permissions by default. As a result, any IAM policies
can also give users and roles permission use the CMK for cryptographic operations.

17. (Optional) You can allow other AWS accounts to use this CMK for cryptographic operations. To do so,
in the Other AWS accounts section at the bottom of the page, choose Add another AWS account
and enter the AWS account identification number of an external account. To add multiple external
accounts, repeat this step.

Note
To allow principals in the external accounts to use the CMK, Administrators of the external
account must create IAM policies that provide these permissions. For more information, see
Allowing Users in Other Accounts to Use a CMK (p. 71).

18. Choose Next.
19. Review the key policy document that was created from your choices. You can edit it, too.
20. Choose Finish to create the CMK.

Creating Asymmetric CMKs (KMS API)

You can use the CreateKey operation to create an asymmetric customer master key (CMK). These
examples use the AWS Command Line Interface (AWS CLI), but you can use any supported programming
language.

21

https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_UpdateKeyDescription.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateKey.html
https://aws.amazon.com/cli/

AWS Key Management Service Developer Guide
Viewing Keys

When you create an asymmetric CMK, you must specify the CustomerMasterKeySpec parameter,
which determines the type of keys you create. Also, you must specify a KeyUsage value of
ENCRYPT_DECRYPT or SIGN_VERIFY. You cannot change these properties after the CMK is created.

The following example uses the CreateKey operation to create an asymmetric CMK of 4096-bit RSA
keys designed for public key encryption.

$ aws kms create-key --customer-master-key-spec RSA_4096 --key-usage ENCRYPT_DECRYPT
{
 "KeyMetadata": {
 "KeyState": "Enabled",
 "KeyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "CustomerMasterKeySpec": "RSA_4096",
 "KeyManager": "CUSTOMER",
 "Description": "",
 "KeyUsage": "ENCRYPT_DECRYPT",
 "Arn": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "CreationDate": 1569973196.214,
 "EncryptionAlgorithms": [
 "RSAES_OAEP_SHA_1",
 "RSAES_OAEP_SHA_256"
],
 "AWSAccountId": "111122223333",
 "Origin": "AWS_KMS",
 "Enabled": true
 }
}

The following example command creates an asymmetric CMK that represents a pair of ECDSA keys used
for signing and verification. You cannot create an elliptic curve key pair for encryption and decryption.

$ aws kms create-key --customer-master-key-spec ECC_NIST_P521 --key-usage SIGN_VERIFY
{
 "KeyMetadata": {
 "KeyState": "Enabled",
 "KeyId": "0987dcba-09fe-87dc-65ba-ab0987654321",
 "CreationDate": 1570824817.837,
 "Origin": "AWS_KMS",
 "SigningAlgorithms": [
 "ECDSA_SHA_512"
],
 "Arn": "arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321",
 "AWSAccountId": "111122223333",
 "CustomerMasterKeySpec": "ECC_NIST_P521",
 "KeyManager": "CUSTOMER",
 "Description": "",
 "Enabled": true,
 "KeyUsage": "SIGN_VERIFY"
 }
}

Viewing Keys
You can use AWS Management Console or the AWS Key Management Service (AWS KMS) API to view
customer master keys (CMKs), including CMKs that you manage and CMKs that are managed by AWS.

Topics
• Viewing CMKs in the Console (p. 23)

22

https://console.aws.amazon.com/kms
https://docs.aws.amazon.com/kms/latest/APIReference/

AWS Key Management Service Developer Guide
Viewing CMKs in the Console

• Viewing CMKs with the API (p. 29)
• Finding the Key ID and ARN (p. 32)
• Identifying Symmetric and Asymmetric CMKs (p. 33)

Viewing CMKs in the Console
In the AWS Management Console, you can view lists of your CMKs and details about each CMK.

Topics
• Navigating to the Key Tables (p. 23)
• Sorting and Filtering Your CMKs (p. 23)
• Displaying CMK Details (p. 25)
• Customizing Your CMK Tables (p. 28)

Navigating to the Key Tables
The AWS KMS customer master keys (CMKs) in each account and region are displayed in tables. There are
separate tables for the CMKs that you create and the CMKs that AWS services create for you.

1. Sign in to the AWS Management Console and open the AWS Key Management Service (AWS KMS)
console at https://console.aws.amazon.com/kms.

2. To change the AWS Region, use the Region selector in the upper-right corner of the page.
3. To view the keys in your account that you create and manage, in the navigation pane choose

Customer managed keys. To view the keys in your account that AWS creates and manages for you,
in the navigation pane, choose AWS managed keys. For information about the different types of
CMKs, see Customer master keys (p. 2).

Tip
To view AWS managed CMKs (p. 4) that are missing an alias, use the Customer managed
keys page.
The AWS KMS console also displays the custom key stores in the account and Region. CMKs
that you create in custom key stores appear on the Customer managed keys page. For
information about custom key stores, see Using a Custom Key Store (p. 172).

Sorting and Filtering Your CMKs
To make it easier to find your CMKs in the console, you can sort and filter them.

Note
The Key type column is displayed only in AWS Regions where AWS KMS supports asymmetric
CMKs and data key pairs.
Asymmetric CMKs and asymmetric data key pairs are supported by AWS KMS only in the
following AWS Regions: US East (N. Virginia), US West (Oregon), Asia Pacific (Sydney), Asia
Pacific (Tokyo), and Europe (Ireland).

Sort

You can sort customer managed CMKs in ascending or descending order by their column values. This
feature sorts all CMKs in the table, even if they don't appear on the current table page.

Sortable columns are indicated by an arrow beside the column name. On the AWS managed keys
page, you can sort by Alias or Key ID. On the Customer managed keys page, you can sort by Alias,
Key ID, or Key type.

23

https://console.aws.amazon.com/kms

AWS Key Management Service Developer Guide
Viewing CMKs in the Console

To sort in ascending order, choose the column heading until the arrow points upward. To sort in
descending order, choose the column heading until the arrow points downward. You can only sort by
one column at a time.

For example, you can sort CMKs in ascending order by key ID, instead of alias, which is the default.

Filter

You can filter CMKs by their column values. The filter applies to all CMKs in the table, even if they
don't appear on the current table page. The filter is not case-sensitive.

Filterable columns are listed in the filter box. On the AWS managed keys page, you can filter by
Alias and Key ID. On the Customer managed keys page, you can filter by Alias, Key ID, and Key
type.

To filter by the value in a particular column, choose the filter, choose the column name, and then
choose from the list of actual column values. After choosing a column, you can also type all or part
of the column value. You'll see a preview of the results before you make your choice.

For example, to display CMKs with an alias name that contains with aws/e, choose the filter box,
choose Alias, type aws/e, and then press Enter or Return to add the filter.

To search for text in all filterable columns, in the filter box, type all or part of a column value. You'll
see a preview of the results before you make your choice.

For example, to display CMKs with test in any of the column values, type test in the filter box.
The preview shows the CMKs that the filter will select. In this case, test appears only in the Alias
column.

24

AWS Key Management Service Developer Guide
Viewing CMKs in the Console

You can have multiple filters at the same time. When you add additional filters, you can also select a
logical operator.

Displaying CMK Details

The details page for each CMK displays the properties of the CMK. It differs slightly for the different
types of CMKs.

To display detailed information about a CMK:

1. To display the details page for a CMK, on the AWS managed keys or Customer managed keys page,
choose the alias or key ID of the CMK.

2. To display all details, expand the General configuration and Cryptographic configuration sections
of the page. If the CMK is configured for imported key material, the page also has a Key materials
section that you can expand.

25

AWS Key Management Service Developer Guide
Viewing CMKs in the Console

The details page for a CMK includes a General Configuration section that displays the basic properties of
the CMK, a Cryptographic Configuration section that displays the cryptographic properties of the CMK,
and a tabbed display that includes the key policy, tags, key rotation (for symmetric CMKs), and public key
(for asymmetric CMKs).

Note
Asymmetric CMKs and asymmetric data key pairs are supported by AWS KMS only in the
following AWS Regions: US East (N. Virginia), US West (Oregon), Asia Pacific (Sydney), Asia
Pacific (Tokyo), and Europe (Ireland).

The following list describes the fields in the detailed display. Some of these fields are also available as
columns in the table display.

Alias

A friendly name for the CMK. The Alias field in the console lists only one alias. To find all aliases for
the CMK, use the ListAliases operation.

ARN

The Amazon Resource Name (ARN) of the CMK. This value uniquely identifies the CMK. You can use it
to identify the CMK in AWS KMS API operations.

Creation date

The date and time that the CMK was created. This value is displayed in local time for the device. The
time zone does not depend on the Region.

Unlike Expiration, the creation refers only to the CMK, not its key material.
CloudHSM cluster ID

The cluster ID of the AWS CloudHSM cluster that contains the key material for the CMK. This field
appears only when the CMK is created in an AWS KMS custom key store (p. 172).

If you click the CloudHSM cluster ID, it opens the Clusters page in the AWS CloudHSM console.

26

https://docs.aws.amazon.com/kms/latest/APIReference/API_ListAliases.html

AWS Key Management Service Developer Guide
Viewing CMKs in the Console

Custom key store ID

The ID of the custom key store (p. 172) that contains the CMK. This field appears only when the
CMK is created in an AWS KMS custom key store.

If you click the custom key store ID, it opens the Custom key stores page in the AWS KMS console.
Custom key store name

The name of the custom key store (p. 172) that contains the CMK. This field appears only when the
CMK is created in an AWS KMS custom key store.

Description

A brief, optional description of the CMK. To add or update the description of a customer managed
CMK, above General Configuration, choose Edit.

Encryption algorithms

Lists the encryption algorithms that can be used with the CMK in AWS KMS. The encryption
algorithm restrictions are not enforceable outside of AWS KMS. This field appears only when the Key
type is Asymmetric and the Key usage is Encrypt and decrypt.

Expiration date

The date and time when the key material for the CMK expires. This field appears only for CMKs with
imported key material (p. 147), that is, when the Origin is External and the CMK has key material
that expires.

Key policy

Controls access to the CMK along with IAM policies (p. 67) and grants (p. 115). Every CMK
has one key policy. It is the only mandatory authorization element. To change the key policy of
a customer managed CMK, on the Key policy tab, choose Edit. For details, see the section called
“Using Key Policies” (p. 50).

Key rotation

Enables and disables automatic key rotation (p. 142) every year.

To change the key rotation status of a customer managed CMK (p. 3), use the checkbox on the Key
rotation tab. All AWS managed CMKs (p. 4) are automatically rotated every three years.

Key spec

The type of of key material in the CMK. AWS KMS supports symmetric CMKs (SYMMETRIC_DEFAULT),
CMKs for RSA keys of different lengths, and elliptic curve keys with different curves.

Key type

Indicates whether the CMK is Symmetric or Asymmetric.
Key usage

Indicates whether a CMK can be used for Encrypt and decrypt or Sign and verify. Only asymmetric
CMKs can be used to sign and verify.

Origin

The source of the key material for the CMK. Valid values are AWS_KMS for key material that AWS
KMS generates, EXTERNAL for imported key material (p. 147), and AWS_CloudHSM for CMKs in
custom key stores (p. 172).

Public key

Displays the public key of an asymmetric CMK. Authorized users can use this tab to copy and
download the public key (p. 43).

27

AWS Key Management Service Developer Guide
Viewing CMKs in the Console

Signing algorithms

Lists the signing algorithms that can be used with the CMK in AWS KMS. This field appears only
when the Key type is Asymmetric and the Key usage is Sign and verify.

Status

The key state of the CMK. You can use the CMK in cryptographic operations only when the status is
Enabled. For a detailed description of each CMK status and its effect on the operations that you can
run on the CMK, see How Key State Affects Use of a Customer Master Key (p. 223).

Tags

Optional key-value pairs that describe the CMK. To add or change the tags for a CMK, on the Tags
tab, choose Edit.

When you add tags to your AWS resources, AWS generates a cost allocation report with usage and
costs aggregated by tags. For information about tagging CMKs, see Tagging Keys (p. 39).

Customizing Your CMK Tables
You can customize the tables that appear on the AWS managed keys and Customer managed keys
pages in the AWS Management Console to suit your needs. You can choose the table columns, the
number of customer master keys (CMKs) on each page (Page size), and the text wrap. The configuration
you choose is saved when you confirm it and reapplied whenever you open the pages.

To customize your CMK tables

1.
On the AWS managed keys or Customer managed keys page, choose the settings icon () in the
upper-right corner of the page.

2. On the Preferences page, choose your preferred settings, and then choose Confirm.

Consider using the Page size setting to increase the number of CMKs displayed on each page, especially
if you typically use a device that's easy to scroll.

The data columns that you display might vary depending on the table, your job role, and the types
of CMKs in the account and Region. The following table offers some suggested configurations. For
descriptions of the columns, see Displaying CMK Details (p. 25).

Suggested CMK Table Configurations

You can customize the columns that appear in your CMK table to display the information you need about
your CMKs.

AWS managed keys

By default, the AWS managed keys table displays the Alias, Key ID, and Status columns. These
columns are ideal for most use cases.

Symmetric customer managed keys

If you use only symmetric CMKs with key material generated by AWS KMS, the Alias, Key ID, Status,
and Creation date columns are likely to be the most useful.

Asymmetric customer managed keys

If you use asymmetric CMKs, in addition to the Alias, Key ID, and Status columns, consider adding
the Key type, Key spec, and Key usage columns. These columns will show you whether a CMK is

28

AWS Key Management Service Developer Guide
Viewing CMKs with the API

symmetric or asymmetric, the type of key material, and whether the CMK can be used for encryption
or signing.

Imported key material

If you have CMKs with imported key material (p. 147), in addition to the Alias, Key ID, and Status
columns, consider adding the Origin and Expiration date columns. These columns will show you
whether the key material in a CMK is imported or generated by AWS KMS and when the key material
expires, if at all. The Creation date field displays the date that the CMK was created (without key
material). It doesn't reflect any characteristic of the key material.

Keys in custom key stores

If you have CMKs in custom key stores (p. 172), in addition to the Alias, Key ID, and Status
columns, consider adding the Custom key store ID column. A value in this column indicates that the
CMK is in a custom key store, as well as showing which custom key store it's in.

Viewing CMKs with the API
You can use the AWS Key Management Service (AWS KMS) API to view your CMKs. This section
demonstrates several operations that return details about existing CMKs. The examples use the AWS
Command Line Interface (AWS CLI), but you can use any supported programming language.

Topics
• ListKeys: Get the ID and ARN of All CMKs (p. 29)
• DescribeKey: Get Detailed Information About a CMK (p. 30)
• GetKeyPolicy: Get the Key Policy Attached to a CMK (p. 31)
• ListAliases: View CMKs by Alias Name (p. 31)

ListKeys: Get the ID and ARN of All CMKs
The ListKeys operation returns the ID and Amazon Resource Name (ARN) of all CMKs in the account and
Region.

For example, this call to the ListKeys operation returns the ID and ARN of each CMK in this fictitious
account.

$ aws kms list-keys

{
 "Keys": [
 {
 "KeyArn": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "KeyId": "1234abcd-12ab-34cd-56ef-1234567890ab"
 },
 {
 "KeyArn": "arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321",
 "KeyId": "0987dcba-09fe-87dc-65ba-ab0987654321"
 },
 {
 "KeyArn": "arn:aws:kms:us-
east-2:111122223333:key/1a2b3c4d-5e6f-1a2b-3c4d-5e6f1a2b3c4d",
 "KeyId": "1a2b3c4d-5e6f-1a2b-3c4d-5e6f1a2b3c4d"
 }
}

29

https://docs.aws.amazon.com/kms/latest/APIReference/
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://docs.aws.amazon.com/kms/latest/APIReference/API_ListKeys.html

AWS Key Management Service Developer Guide
Viewing CMKs with the API

DescribeKey: Get Detailed Information About a CMK

The DescribeKey operation returns details about the specified CMK. To identify the CMK, use its key ID,
key ARN, alias name, or alias ARN.

For example, this call to DescribeKey returns information about a symmetric CMK. The fields in the
response vary with the customer master key spec, key state, and the origin.

$ aws kms describe-key --key-id 1234abcd-12ab-34cd-56ef-1234567890ab

{
 "KeyMetadata": {
 "Origin": "AWS_KMS",
 "KeyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "Description": "",
 "KeyManager": "CUSTOMER",
 "Enabled": true,
 "CustomerMasterKeySpec": "SYMMETRIC_DEFAULT",
 "KeyUsage": "ENCRYPT_DECRYPT",
 "KeyState": "Enabled",
 "CreationDate": 1499988169.234,
 "Arn": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "AWSAccountId": "111122223333"
 "EncryptionAlgorithms": [
 "SYMMETRIC_DEFAULT"
]
 }
}

This example calls DescribeKey operation on an asymmetric CMK used for signing and verification. The
response includes the signing algorithms that AWS KMS supports for this CMK.

Note
Asymmetric CMKs and asymmetric data key pairs are supported by AWS KMS only in the
following AWS Regions: US East (N. Virginia), US West (Oregon), Asia Pacific (Sydney), Asia
Pacific (Tokyo), and Europe (Ireland).

$ aws kms describe-key --key-id 0987dcba-09fe-87dc-65ba-ab0987654321

{
 "KeyMetadata": {
 "KeyId": "0987dcba-09fe-87dc-65ba-ab0987654321",
 "Origin": "AWS_KMS",
 "Arn": "arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321",
 "KeyState": "Enabled",
 "KeyUsage": "SIGN_VERIFY",
 "CreationDate": 1569973196.214,
 "Description": "",
 "CustomerMasterKeySpec": "ECC_NIST_P521",
 "AWSAccountId": "111122223333",
 "Enabled": true,
 "KeyManager": "CUSTOMER"
 "SigningAlgorithms": [
 "ECDSA_SHA_512"
]
 }
}

30

https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html

AWS Key Management Service Developer Guide
Viewing CMKs with the API

You can use the DescribeKey operation on a predefined AWS alias, that is, an AWS alias with no key ID.
When you do, AWS KMS associates the alias with an AWS managed CMK (p. 2) and returns its KeyId and
Arn in the response.

GetKeyPolicy: Get the Key Policy Attached to a CMK
The GetKeyPolicy operation gets the key policy that is attached to the CMK. To identify the CMK, use its
key ID or key ARN. You must also specify the policy name, which is always default. (If your output is
difficult to read, add the --output text option to your command.)

$ aws kms get-key-policy --key-id 1234abcd-12ab-34cd-56ef-1234567890ab --policy-name
 default

{
 "Version" : "2012-10-17",
 "Id" : "key-default-1",
 "Statement" : [{
 "Sid" : "Enable IAM User Permissions",
 "Effect" : "Allow",
 "Principal" : {
 "AWS" : "arn:aws:iam::111122223333:root"
 },
 "Action" : "kms:*",
 "Resource" : "*"
 }]
}

ListAliases: View CMKs by Alias Name
The ListAliases operation returns aliases in the account and region. The TargetKeyId in the response
displays the key ID of the CMK that the alias refers to, if any.

By default, the ListAliases command returns all aliases in the account and region. This includes aliases
that you created and associated with your customer managed CMKs (p. 2), and aliases that AWS created
and associated with AWS managed CMKs (p. 2) in your account. You can recognize AWS aliases because
their names have the format aws/<service-name>, such as aws/dynamodb.

The response might also include aliases that have no TargetKeyId field, such as the aws/redshift
alias in this example. These are predefined aliases that AWS has created but has not yet associated with a
CMK.

$ aws kms list-aliases

{
 "Aliases": [
 {
 "AliasArn": "arn:aws:kms:us-west-2:111122223333:alias/ImportedKey",
 "TargetKeyId": "0987dcba-09fe-87dc-65ba-ab0987654321",
 "AliasName": "alias/ExampleKey"
 },
 {
 "AliasArn": "arn:aws:kms:us-west-2:111122223333:alias/test-key",
 "TargetKeyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "AliasName": "alias/test-key"
 },
 {
 "AliasArn": "arn:aws:kms:us-west-2:111122223333:alias/financeKey",
 "TargetKeyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "AliasName": "alias/financeKey"
 },

31

https://docs.aws.amazon.com/kms/latest/APIReference/API_GetKeyPolicy.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ListAliases.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateAlias.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateAlias.html

AWS Key Management Service Developer Guide
Finding the Key ID and ARN

 {
 "AliasArn": "arn:aws:kms:us-west-2:111122223333:alias/aws/dynamodb",
 "TargetKeyId": "1a2b3c4d-5e6f-1a2b-3c4d-5e6f1a2b3c4d",
 "AliasName": "alias/aws/dynamodb"
 },
 {
 "AliasArn": "arn:aws:kms:us-west-2:111122223333:alias/aws/redshift",
 "AliasName": "alias/aws/redshift"
 },
 {
 "AliasArn": "arn:aws:kms:us-west-2:111122223333:alias/aws/s3",
 "TargetKeyId": "0987ab65-43cd-21ef-09ab-87654321cdef",
 "AliasName": "alias/aws/s3"
 }
]
}

To get the aliases that refer to a particular CMK, use the KeyId parameter. The parameter value can be
the Amazon Resource Name (ARN) of the CMK or the CMK ID. You cannot specify an alias or alias ARN.

The command in the following example gets the aliases that refer to a customer managed CMK. But you
can use a command like this one to find the aliases that refer to AWS managed CMKs, too.

$ aws kms list-aliases --key-id arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

{
 "Aliases": [
 {
 "AliasArn": "arn:aws:kms:us-west-2:111122223333:alias/test-key",
 "TargetKeyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "AliasName": "alias/test-key"
 },
 {
 "AliasArn": "arn:aws:kms:us-west-2:111122223333:alias/financeKey",
 "TargetKeyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "AliasName": "alias/financeKey"
 },
]
}

Finding the Key ID and ARN
To identify your AWS KMS CMKs in programs, scripts, and command line interface (CLI) commands, you
use the ID of the CMK or its Amazon Resource Name (ARN). Cryptographic operations also let you use the
CMK alias.

To find the CMK ID and ARN (Console)
1. Open the AWS KMS console at https://console.aws.amazon.com/kms.
2. To change the AWS Region, use the Region selector in the upper-right corner of the page.
3. To view the keys in your account that you create and manage, in the navigation pane choose

Customer managed keys. To view the keys in your account that AWS creates and manages for you,
in the navigation pane, choose AWS managed keys.

4. To find the key ID for a CMK, see the row that begins with the CMK alias.

The Key ID column appears in the tables by default. If the Key ID column doesn't appear in your
table, use the procedure described in the section called “Customizing Your CMK Tables” (p. 28) to
restore it. You can also view the key ID of a CMK on its details page.

32

https://console.aws.amazon.com/kms

AWS Key Management Service Developer Guide
Identifying Symmetric and Asymmetric CMKs

5. To find the Amazon Resource Name (ARN) of the CMK, choose the key ID or alias. The key ARN
appears in the General Configuration section.

To find the CMK ID and ARN (KMS API)

Use the ListKeys API operation

• To find the CMK ID and ARN, use the ListKeys (p. 29) operation.

Identifying Symmetric and Asymmetric CMKs
To determine whether a particular CMK is symmetric or asymmetric (p. 129), find its key type or key
spec (p. 10). You can use the AWS KMS console or AWS KMS API.

Some of these methods will also show you other aspects of the cryptographic configuration of a CMK,
including its key usage and the encryption or signing algorithms that the CMK supports. You can view
the cryptographic configuration of an existing CMK, but you cannot change it.

Note
Asymmetric CMKs and asymmetric data key pairs are supported by AWS KMS only in the
following AWS Regions: US East (N. Virginia), US West (Oregon), Asia Pacific (Sydney), Asia
Pacific (Tokyo), and Europe (Ireland).

For general information about viewing CMKs, including sorting, filtering, and choosing columns for your
console display, see Viewing CMKs in the Console (p. 23).

Topics

• Finding the Key Type in the CMK Table (p. 34)

• Finding the Key Type on the Details Page (p. 34)

• Finding the Key Spec Using the AWS KMS API (p. 35)

33

AWS Key Management Service Developer Guide
Identifying Symmetric and Asymmetric CMKs

Finding the Key Type in the CMK Table
In the AWS KMS console, the Key type column shows whether each CMK is symmetric or asymmetric.
You can add a Key type column to the CMK table on the Customer managed keys or AWS managed
keys pages in the console.

To identify symmetric and asymmetric CMKs in your CMK table, use the following procedure.

1. Open the AWS KMS console at https://console.aws.amazon.com/kms.
2. To change the AWS Region, use the Region selector in the upper-right corner of the page.
3. To view the keys in your account that you create and manage, in the navigation pane choose

Customer managed keys. To view the keys in your account that AWS creates and manages for you,
in the navigation pane, choose AWS managed keys.

4. The Key type columns shows whether each CMK is symmetric or asymmetric. You can also sort and
filter (p. 23) by the Key type value.

If the Key type column does not appear in your CMK table, choose the gear icon in the upper right
corner of the page, choose Key type, and then choose Confirm. You can also add the Key spec and
Key usage columns.

Finding the Key Type on the Details Page
In the AWS KMS console, the details page for each CMK includes a Cryptographic Configuration section
that displays the key type (symmetric or asymmetric) and other cryptographic details about the CMK.

To identify symmetric and asymmetric CMKs on the details page for a CMK, use the following procedure.

1. Open the AWS KMS console at https://console.aws.amazon.com/kms.
2. To change the AWS Region, use the Region selector in the upper-right corner of the page.
3. To view the keys in your account that you create and manage, in the navigation pane choose

Customer managed keys. To view the keys in your account that AWS creates and manages for you,
in the navigation pane, choose AWS managed keys.

4. Choose the alias or key ID of a CMK.
5. Choose Cryptographic configuration.

The Cryptographic configuration section includes the Key Type, which indicates whether it is
symmetric or asymmetric. It also displays other details about the CMK, including the Key Usage,
which tells whether a CMK can be used for encryption and decryption or signing and verification.
For asymmetric CMKs, it displays the encryption algorithms or signing algorithms that the CMK
supports.

34

https://console.aws.amazon.com/kms
https://console.aws.amazon.com/kms

AWS Key Management Service Developer Guide
Identifying Symmetric and Asymmetric CMKs

For example, the following is an example Cryptographic configuration section for a symmetric
CMK.

The following is an example Cryptographic configuration section for an asymmetric RSA CMK that's
used for signing and verification.

Finding the Key Spec Using the AWS KMS API
To determine whether a CMK is symmetric or asymmetric, use the DescribeKey operation. The
CustomerMasterKeySpec field in the response contains the key spec (p. 10) of the CMK. For a
symmetric CMK, the value of CustomerMasterKeySpec is SYMMETRIC_DEFAULT. All other values
indicate an asymmetric CMK.

For example, DescribeKey returns the following response for a symmetric CMK. The
CustomerMasterKeySpec value is SYMMETRIC_DEFAULT.

{
 "KeyMetadata": {
 "AWSAccountId": "111122223333",
 "KeyId": "0987dcba-09fe-87dc-65ba-ab0987654321",
 "Arn": "arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321",
 "CreationDate": 1496966810.831,
 "Enabled": true,
 "Description": "",
 "KeyState": "Enabled",
 "Origin": "AWS_KMS",
 "KeyManager": "CUSTOMER",
 "CustomerMasterKeySpec": "SYMMETRIC_DEFAULT",
 "KeyUsage": "ENCRYPT_DECRYPT",
 "EncryptionAlgorithms": [
 "SYMMETRIC_DEFAULT"
]
 }
}

The DescribeKey response for an asymmetric RSA CMK used in signing and verification looks similar to
this example. The CustomerMasterKeySpec value is RSA_2048. To learn more about this key spec, see
RSA Key Specs (p. 134).

35

https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html

AWS Key Management Service Developer Guide
Editing Keys

{
 "KeyMetadata": {
 "AWSAccountId": "111122223333",
 "KeyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "Arn": "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "CreationDate": 1571767572.317,
 "Enabled": false,
 "Description": "",
 "KeyState": "Disabled",
 "Origin": "AWS_KMS",
 "KeyManager": "CUSTOMER",
 "CustomerMasterKeySpec": "RSA_2048",
 "KeyUsage": "SIGN_VERIFY",
 "SigningAlgorithms": [
 "RSASSA_PKCS1_V1_5_SHA_256",
 "RSASSA_PKCS1_V1_5_SHA_384",
 "RSASSA_PKCS1_V1_5_SHA_512",
 "RSASSA_PSS_SHA_256",
 "RSASSA_PSS_SHA_384",
 "RSASSA_PSS_SHA_512"
]
 }
}

Editing Keys
You can use the AWS KMS API and the key detail page of the AWS Management Console to edit some
of the properties of your customer managed customer master keys (p. 2) (CMKs). You can change the
description, add and remove administrators and users, manage tags, and enable and disable key rotation.

You cannot change the properties of AWS managed CMKs (p. 2).

Topics

• Editing CMKs (Console) (p. 36)

• Editing CMKs (KMS API) (p. 38)

Editing CMKs (Console)
Users who have the required permissions can change the properties of a customer managed CMK,
including its description, tags, policies and grants, and rotation status in the AWS Management Console.

You can view (p. 22), but not edit, the properties of AWS managed CMKs. To view the key policy for an
AWS managed CMK, use the GetKeyPolicy operation.

Navigate to the CMK details page

1. Sign in to the AWS Management Console and open the AWS Key Management Service (AWS
KMS) console at https://console.aws.amazon.com/kms.

2. To change the AWS Region, use the Region selector in the upper-right corner of the page.

3. In the navigation pane, choose Customer managed keys. (You cannot edit the properties of
AWS managed keys.)

4. Choose the alias or key ID of the CMK that you want to edit. Now, use the controls on the key
details page to view and change the properties of the CMK.

36

https://docs.aws.amazon.com/kms/latest/APIReference/API_GetKeyPolicy.html
https://console.aws.amazon.com/kms

AWS Key Management Service Developer Guide
Editing CMKs (Console)

Change the CMK description

You can add, change, or delete the description of your CMK unless its key state (p. 223) is Pending
Deletion. The description is optional.

1. In the upper-right corner, choose Edit.

2. For Description, type a brief description of the CMK. You can also delete an existing description.

Enter a description that explains the type of data you plan to protect or the application you plan
to use with the CMK. The Default master key that protects my ... when no other key is defined
description format is reserved for AWS managed CMKs (p. 4).

3. To save your changes, choose Save.

Change CMK administrators and users

You can change the key policy for your CMK. Key policies define the IAM users, groups, and roles that
can manage the CMK and use it for cryptographic operations.

The AWS account (root user) has full permissions by default. As a result, any IAM users and roles
whose attached policies allow the appropriate permissions can also administer the CMK. For detailed
information about setting key policies and IAM policies, see Authentication and Access Control for
AWS KMS (p. 46).

1. On the details page for CMK, choose the Key policy tab.

If the key policy for the CMK is a default policy, the Key policy tab displays the default view with
Key administrators, Key deletion, Key users, and Other AWS accounts sections. Otherwise, the
tab displays the key policy document.

To edit the key policy document directly, choose Switch to policy view (if applicable), choose
Edit, edit the document, then choose Save.

The remaining steps in this procedure explain how to edit the key policy using the default view.

2. To change the users and roles who can manage the CMK, use the Key administrators section.

• To add a key administrator, choose Add, choose or type a user or role, then choose Add.

• To remove a key administrator, check the box for the user or role, then choose Remove.

3. To prevent the key administrators from scheduling deletion of the CMK, in the Key deletion
section, clear the Allow key administrators to delete this key check box.

4. To change the users and roles who can use the CMK in cryptographic operations, use the Key
users section.

• To add a key user, choose Add, choose a user or role, then choose Add.

• To remove a key user, check the box for the user or role, then choose Remove.

5. To change the other AWS accounts that can use the CMK in cryptographic operations, in the
Other AWS accounts section, choose Add other AWS accounts.

Note
Adding an external account does not allow users and roles in the account to use the
CMK. To allow users an roles in an external account to use the CMK, an administrator
of the external account must add IAM policies that provide these permissions. For more
information, see Allowing Users in Other Accounts to Use a CMK (p. 71).

• To add accounts, choose Add another AWS account, type the account number.

• To remove accounts, on the row with the account number, choose Remove.

When you are done, choose Save changes, then click the X to close the window.

37

AWS Key Management Service Developer Guide
Editing CMKs (KMS API)

Add, edit, and delete tags

You can change the tags for your CMK. Each tag is a name–value pair. The tag name must be unique
in the account and region.

You can use tags to identify and categorize your CMKs. When you add tags to your AWS resources,
AWS generates a cost allocation report with usage and costs aggregated by tags. For more
information about CMK tags, see Tagging Keys (p. 39).

• On the details page for CMK, choose the Tags tab.

• To create your first tag, choose Create tag, type a tag name and tag value, and then choose
Save.

• To add a tag, choose Edit, choose Add tag, type a tag name and tag value, and then choose
Save.

• To change the name or value of a tag, choose Edit, make your changes, and then choose Save.

• To delete a tag, choose Edit. On the tag row, choose Remove, and then choose Save.

Enable or disable rotation

You can enable and disable automatic rotation (p. 142) of the cryptographic material in a
symmetric customer managed CMK (p. 2). This feature is not supported for asymmetric CMKs or for
CMKs with imported key material.

Note
Asymmetric CMKs and asymmetric data key pairs are supported by AWS KMS only in the
following AWS Regions: US East (N. Virginia), US West (Oregon), Asia Pacific (Sydney), Asia
Pacific (Tokyo), and Europe (Ireland).

AWS managed CMKs (p. 2) are automatically rotated every three years. You cannot enable or disable
this feature.

1. On the details page for CMK, choose the Key rotation tab.

2. To enable automatic key rotation, check the Automatically rotate this CMK every year check
box. To disable automatic key rotation, clear the check box.

3. To save your changes, choose Save.

Editing CMKs (KMS API)
You can use the AWS Key Management Service (AWS KMS) API to edit the properties of your customer
managed CMKs (p. 2). These examples use the AWS Command Line Interface (AWS CLI), but you can use
any supported programming language. This section demonstrates several operations that return details
about existing CMKs.

You cannot edit the properties of AWS managed CMKs (p. 2).

Topics

• UpdateKeyDescription: Change the Description of a CMK (p. 39)

• PutKeyPolicy: Change the Key Policy for a CMK (p. 39)

• Enable and Disable Key Rotation (p. 39)

Tip
For information about adding, deleting, and editing tags, see Tagging Keys (p. 39).

38

https://docs.aws.amazon.com/kms/latest/APIReference/
https://aws.amazon.com/cli/

AWS Key Management Service Developer Guide
Tagging Keys

UpdateKeyDescription: Change the Description of a CMK
The UpdateKeyDescription operation replaces the description of the CMK with the one that you specify.
You can use it to add, change, or delete the description of a CMK. To see the description, use the
DescribeKey operation.

For example, this call to the UpdateKeyDescription operation changes the description of the
specified CMK.

$ aws kms update-key-description --key-id 1234abcd-12ab-34cd-56ef-1234567890ab \
 --description "Example key"

To get the description of a key, use the DescribeKey operation, as shown in the following example.

$ aws kms describe-key --key-id 1234abcd-12ab-34cd-56ef-1234567890ab

{
 "KeyMetadata": {
 "Origin": "AWS_KMS",
 "KeyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "Description": "Example key",
 "KeyManager": "CUSTOMER",
 "Enabled": true,
 "KeyUsage": "ENCRYPT_DECRYPT",
 "KeyState": "Enabled",
 "CreationDate": 1499988169.234,
 "Arn": "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "AWSAccountId": "111122223333"
 "CustomerMasterKeySpec": "SYMMETRIC_DEFAULT",
 "EncryptionAlgorithms": [
 "SYMMETRIC_DEFAULT"
]
 }
}

PutKeyPolicy: Change the Key Policy for a CMK
The PutKeyPolicy operation changes the key policy of the CMK to the policy that you specify. The policy
includes permissions for administrators, users, and roles. For a detailed example, see PutKeyPolicy
Examples.

Enable and Disable Key Rotation
The EnableKeyRotation operation enables automatic rotation (p. 142) of the cryptographic material
in a symmetric CMK. The DisableKeyRotation operation disables it. The GetKeyRotationStatus operation
returns a Boolean value that tells you whether automatic key rotation is enabled (true) or disabled
(false).

For an example, see Rotating Customer Master Keys (p. 142).

Tagging Keys
You can add, change, and delete tags for customer managed CMKs (p. 2). Each tag consists of a tag key
and a tag value that you define. For example, the tag key might be "Cost Center" and the tag value might
be "87654." You cannot tag AWS managed CMKs (p. 2).

39

https://docs.aws.amazon.com/kms/latest/APIReference/API_UpdateKeyDescription.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_PutKeyPolicy.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_PutKeyPolicy.html#API_PutKeyPolicy_Examples
https://docs.aws.amazon.com/kms/latest/APIReference/API_PutKeyPolicy.html#API_PutKeyPolicy_Examples
https://docs.aws.amazon.com/kms/latest/APIReference/API_EnableKeyRotation.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DisableKeyRotation.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetKeyRotationStatus.html

AWS Key Management Service Developer Guide
Managing CMK Tags (Console)

When you add tags to your AWS resources, AWS generates a cost allocation report with usage and costs
aggregated by tags. You can use this feature to track AWS KMS costs for a project, application, or cost
center.

For more information about using tags for cost allocation, see Using Cost Allocation Tags in the AWS
Billing and Cost Management User Guide. For information about the rules that apply to tag keys and tag
values, see User-Defined Tag Restrictions in the AWS Billing and Cost Management User Guide.

Topics

• Managing CMK Tags (Console) (p. 40)

• Managing CMK Tags (KMS API) (p. 40)

Managing CMK Tags (Console)
You can add, edit, and delete tags for your customer managed CMKs in the AWS Management Console.
You can add tags to a CMK when you create it (p. 17) and edit them at any time. You cannot edit the
tags of CMKs that are pending deletion. For more information, see Editing Keys (p. 36).

1. Sign in to the AWS Management Console and open the AWS Key Management Service (AWS KMS)
console at https://console.aws.amazon.com/kms.

2. To change the AWS Region, use the Region selector in the upper-right corner of the page.

3. In the navigation pane, choose Customer managed keys. (You cannot manage the tags of an AWS
managed CMK.)

4. Select the check box next to the alias of a CMK.

5. Choose Key actions, Add or edit tags.

6. Use the controls to add, edit, or delete tags. The tag name must be unique in the account and
region.

7. To save your changes, choose Save changes.

Managing CMK Tags (KMS API)
You can use the AWS Key Management Service (AWS KMS) API to add, delete, and list tags for the CMKs
that you manage. These examples use the AWS Command Line Interface (AWS CLI), but you can use any
supported programming language.

You cannot tag AWS managed CMKs.

Topics

• TagResource: Add or Change Tags for a CMK (p. 40)

• ListResourceTags: Get the Tags for a CMK (p. 41)

• UntagResource: Delete Tags from a CMK (p. 41)

TagResource: Add or Change Tags for a CMK

The TagResource operation adds one or more tags to a CMK.

You can also use TagResource to change the values for an existing tag. To replace tag values, specify the
same tag key with different values. To add values to a tag, specify the tag key with both new and existing
values.

40

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/allocation-tag-restrictions.html
https://console.aws.amazon.com/kms
https://docs.aws.amazon.com/kms/latest/APIReference/
https://aws.amazon.com/cli/
https://docs.aws.amazon.com/kms/latest/APIReference/API_TagResource.html

AWS Key Management Service Developer Guide
Enabling and Disabling Keys

For example, this call to the TagResource operation adds Purpose and Department tags to the
specified CMK. You can use any keys and values as CMK tags.

$ aws kms tag-resource --key-id 1234abcd-12ab-34cd-56ef-1234567890ab /
 --tags TagKey=Purpose,TagValue=Test /
 TagKey=Department,TagValue=Finance

When this command is successful, it does not return any output. To view the tags on a CMK, use the
ListResourceTags operation.

ListResourceTags: Get the Tags for a CMK
The ListResourceTags operation gets the tags for a CMK. The key-id parameter is required.

For example, the following command gets the tags for the specified CMK.

$ aws kms list-resource-tags --key-id 1234abcd-12ab-34cd-56ef-1234567890ab

 "Truncated": false,
 "Tags": [
 {
 "TagKey": "Purpose",
 "TagValue": "Test"
 },
 {
 "TagKey": "Department",
 "TagValue": "Finance"
 }
]
}

UntagResource: Delete Tags from a CMK
The UntagResource operation deletes tags from a CMK. The key-id and tag-keys parameters are
required.

For example, this command deletes the Purpose tag and all of its values from the specified CMK.

$ aws kms untag-resource --tag-keys Purpose --key-id 1234abcd-12ab-34cd-56ef-1234567890ab

When this command is successful, it does not return any output.

Enabling and Disabling Keys
You can disable and reenable the customer master keys (p. 2) (CMKs) that you manage. You cannot
enable or disable AWS managed CMKs.

When you create a CMK, it is enabled by default. If you disable a CMK, it cannot be used to encrypt or
decrypt data until you re-enable it. AWS managed CMKs are permanently enabled for use by services
that use AWS KMS (p. 228). You cannot disable them.

You can also delete CMKs. For more information, see Deleting Customer Master Keys (p. 160).

Note
AWS KMS does not rotate the backing keys of customer managed CMKs while they are disabled.
For more information, see How Automatic Key Rotation Works (p. 143).

41

https://docs.aws.amazon.com/kms/latest/APIReference/API_ListResourceTags.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ListResourceTags.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_UntagResource.html

AWS Key Management Service Developer Guide
Enabling and Disabling CMKs (Console)

Topics
• Enabling and Disabling CMKs (Console) (p. 42)

• Enabling and Disabling CMKs (KMS API) (p. 42)

Enabling and Disabling CMKs (Console)
You can enable and disable customer managed CMKs from the IAM section of the AWS Management
Console.

1. Sign in to the AWS Management Console and open the AWS Key Management Service (AWS KMS)
console at https://console.aws.amazon.com/kms.

2. To change the AWS Region, use the Region selector in the upper-right corner of the page.

3. In the navigation pane, choose Customer managed keys.

4. Select the check box for the CMKs that you want to enable or disable.

5. To enable a CMK, choose Key actions, Enable. To disable a CMK, choose Key actions, Disable.

Enabling and Disabling CMKs (KMS API)
The EnableKey operation enables a disabled AWS KMS customer master key (CMK). These examples use
the AWS Command Line Interface (AWS CLI), but you can use any supported programming language. The
key-id parameter is required.

This operation does not return any output. To see the key status, use the DescribeKey operation.

$ aws kms enable-key --key-id 1234abcd-12ab-34cd-56ef-1234567890ab

The DisableKey operation disables an enabled CMK. The key-id parameter is required.

$ aws kms disable-key --key-id 1234abcd-12ab-34cd-56ef-1234567890ab

This operation does not return any output. To see the key status, use the DescribeKey operation, and see
the Enabled field.

$ aws kms describe-key --key-id 1234abcd-12ab-34cd-56ef-1234567890ab
{
 "KeyMetadata": {
 "Origin": "AWS_KMS",
 "KeyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "Description": "",
 "KeyManager": "CUSTOMER",
 "Enabled": false,
 "KeyState": "Disabled",
 "KeyUsage": "ENCRYPT_DECRYPT",
 "CreationDate": 1502910355.475,
 "Arn": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "AWSAccountId": "111122223333"
 "CustomerMasterKeySpec": "SYMMETRIC_DEFAULT",
 "EncryptionAlgorithms": [
 "SYMMETRIC_DEFAULT"
]
 }
}

42

https://console.aws.amazon.com/kms
https://docs.aws.amazon.com/kms/latest/APIReference/API_EnableKey.html
https://aws.amazon.com/cli/
https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DisableKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html

AWS Key Management Service Developer Guide
Downloading Public Keys

Downloading Public Keys
You can view, copy, and download the public key from an asymmetric CMK pair by using the AWS
Management Console or the AWS KMS API. You must have kms:GetPublicKey permission on the
asymmetric CMK.

Note
Asymmetric CMKs and asymmetric data key pairs are supported by AWS KMS only in the
following AWS Regions: US East (N. Virginia), US West (Oregon), Asia Pacific (Sydney), Asia
Pacific (Tokyo), and Europe (Ireland).

Each asymmetric CMK pair consists of a private key that never leaves AWS KMS unencrypted and a public
key that you can download and share.

You might share a public key to let others encrypt data outside of AWS KMS that you can decrypt only
with your private key. Or, to allow others to verify a digital signature outside of AWS KMS that you have
generated with your private key.

When you use the public key in your asymmetric CMK within AWS KMS, you benefit from the
authentication, authorization, and logging that are part of every AWS KMS operation. You also reduce of
risk of encrypting data that cannot be decrypted. These features are not effective outside of AWS KMS.
For details, see Special Considerations for Downloading Public Keys (p. 43).

Topics
• Special Considerations for Downloading Public Keys (p. 43)
• Downloading a Public Key (Console) (p. 44)
• Downloading a Public Key (KMS API) (p. 44)

Special Considerations for Downloading Public Keys
To protect your CMKs, AWS KMS provides access controls, authenticated encryption, and detailed logs
of every operation. AWS KMS also allows you to prevent the use of CMKs, temporarily or permanently.
Finally, AWS KMS operations are designed to minimize of risk of encrypting data that cannot be
decrypted. These features are not available when you use downloaded public keys outside of AWS KMS.

Authorization

Key policies (p. 50) and IAM policies (p. 67) that control access to the CMK within AWS KMS
have no effect on operations performed outside of AWS. Any user who can get the public key can
use it outside of AWS KMS even if they don't have permission to encrypt data or verify signatures
with the CMK.

Key Usage Restrictions

Key usage restrictions are not effective outside of AWS KMS. If you call the Encrypt operation with
a CMK that has a KeyUsage of SIGN_VERIFY, the AWS KMS operation fails. But if you encrypt data
outside of AWS KMS with a public key from an CMK with a KeyUsage of SIGN_VERIFY, the data
cannot be decrypted.

Algorithm Restrictions

Restrictions on the encryption and signing algorithms that AWS KMS supports are not effective
outside of AWS KMS. If you encrypt data with the public key from a CMK outside of AWS KMS, and
use an encryption algorithm that AWS KMS does not support, the data cannot be decrypted.

Disabling and Deleting CMKs

Actions that you can take to prevent the use of CMK in a cryptographic operation within AWS KMS
do not prevent anyone from using the public key outside of AWS KMS. For example, disabling a CMK,

43

https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html

AWS Key Management Service Developer Guide
Downloading a Public Key (Console)

scheduling deletion of a CMK, deleting a CMK, or deleting the key material from a CMK have no
effect on a public key outside of AWS KMS. If you delete an asymmetric CMK or delete or lose its key
material, data that you encrypt with a public key outside of AWS KMS is unrecoverable.

Logging

AWS CloudTrail logs that record every AWS KMS operation, including the request, response, date,
time, and authorized user, do not record the use of the public key outside of AWS KMS.

Downloading a Public Key (Console)
You can use the AWS Management Console to view, copy, and download the public key from an
asymmetric CMK in your AWS account. To download the public key from an asymmetric CMK in different
AWS account, use the AWS KMS API.

1. Sign in to the AWS Management Console and open the AWS Key Management Service (AWS KMS)
console at https://console.aws.amazon.com/kms.

2. To change the AWS Region, use the Region selector in the upper-right corner of the page.
3. In the navigation pane, choose Customer managed keys.
4. Choose the alias or key ID of an asymmetric CMK.
5. From the Cryptographic configuration section, record the values of the Key spec, Key usage, and

Encryption algorithms or Signing Algorithms fields. You'll need to use these values to use the
public key outside of AWS KMS. Be sure to share this information when you share the public key.

6. Choose the Public key tab.
7. To copy the public key to your clipboard, choose Copy. To download the public key to a file, choose

Download.

Downloading a Public Key (KMS API)
The GetPublicKey operation returns the public key in an asymmetric CMK. It also returns critical
information that you need to use the public key correctly outside of AWS KMS, including the key usage
and encryption algorithms. Be sure to save these values and share them whenever you share the public
key.

The examples in this section use the AWS Command Line Interface (AWS CLI), but you can use any
supported programming language.

To specify a CMK, use its key ID, Amazon Resource Name (ARN), alias name, or alias ARN. When using an
alias name, prefix it with alias/. To specify a CMK in a different AWS account, you must use its key ARN or
alias ARN.

Before running this command, replace the example alias name with a valid identifier for the CMK. To run
this command, you must have kms:GetPublicKey permissions on the CMK.

$ aws kms get-public-key --key-id alias/example_RSA_3072

{
 "CustomerMasterKeySpec": "RSA_3072",
 "KeyId": "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "KeyUsage": "ENCRYPT_DECRYPT",
 "EncryptionAlgorithms": [
 "RSAES_OAEP_SHA_1",
 "RSAES_OAEP_SHA_256"
],
 "PublicKey": "MIIBojANBgkqhkiG..."

44

https://console.aws.amazon.com/kms
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://aws.amazon.com/cli/

AWS Key Management Service Developer Guide
Downloading a Public Key (KMS API)

}

45

AWS Key Management Service Developer Guide
Authentication

Authentication and Access Control
for AWS KMS

Access to AWS KMS requires credentials that AWS can use to authenticate your requests. The credentials
must have permissions to access AWS resources, such as AWS KMS customer master keys (CMKs). The
following sections provide details about how you can use AWS Identity and Access Management (IAM)
and AWS KMS to help secure your resources by controlling who can access them.

Topics

• Authentication (p. 46)

• Access Control (p. 47)

Authentication
You can access AWS as any of the following types of identities:

• AWS account root user – When you sign up for AWS, you provide an email address and password for
your AWS account. These are your root credentials and they provide complete access to all of your AWS
resources.

Important
For security reasons, we recommend that you use the root credentials only to create an
administrator user, which is an IAM user with full permissions to your AWS account. Then, you
can use this administrator user to create other IAM users and roles with limited permissions.
For more information, see Create Individual IAM Users (IAM Best Practices) and Creating An
Admin User and Group in the IAM User Guide.

• IAM user – An IAM user is an identity within your AWS account that has specific permissions (for
example, to use a KMS CMK). You can use an IAM user name and password to sign in to secure AWS
webpages like the AWS Management Console, AWS Discussion Forums, or the AWS Support Center.

In addition to a user name and password, you can also create access keys for each user to enable the
user to access AWS services programmatically, through one of the AWS SDKs or the command line
tools. The SDKs and command line tools use the access keys to cryptographically sign API requests. If
you don't use the AWS tools, you must sign API requests yourself. AWS KMS supports Signature Version
4, an AWS protocol for authenticating API requests. For more information about authenticating API
requests, see Signature Version 4 Signing Process in the AWS General Reference.

• IAM role – An IAM role is another IAM identity you can create in your account that has specific
permissions. It is similar to an IAM user, but it is not associated with a specific person. An IAM role
enables you to obtain temporary access keys to access AWS services and resources programmatically.
IAM roles are useful in the following situations:

46

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#create-iam-users
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://console.aws.amazon.com/
https://forums.aws.amazon.com/
https://console.aws.amazon.com/support/home#/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://aws.amazon.com/tools/#sdk
https://aws.amazon.com/tools/#cli
https://aws.amazon.com/tools/#cli
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

AWS Key Management Service Developer Guide
Access Control

• Federated user access – Instead of creating an IAM user, you can use preexisting user identities from
AWS Directory Service, your enterprise user directory, or a web identity provider. These are known
as federated users. Federated users use IAM roles through an identity provider. For more information
about federated users, see Federated Users and Roles in the IAM User Guide.

• Cross-account access – You can use an IAM role in your AWS account to allow another AWS account
permissions to access your account's resources. For an example, see Tutorial: Delegate Access Across
AWS Accounts Using IAM Roles in the IAM User Guide.

• AWS service access – You can use an IAM role in your account to allow an AWS service permissions
to access your account's resources. For example, you can create a role that allows Amazon Redshift
to access an S3 bucket on your behalf and then load data stored in the S3 bucket into an Amazon
Redshift cluster. For more information, see Creating a Role to Delegate Permissions to an AWS
Service in the IAM User Guide.

• Applications running on EC2 instances – Instead of storing access keys on an EC2 instance for
use by applications that run on the instance and make AWS API requests, you can use an IAM role
to provide temporary access keys for these applications. To assign an IAM role to an EC2 instance,
you create an instance profile and then attach it when you launch the instance. An instance profile
contains the role and enables applications running on the EC2 instance to get temporary access
keys. For more information, see Using Roles for Applications on Amazon EC2 in the IAM User Guide.

Access Control
You can have valid credentials to authenticate your requests, but you also need permissions to make
AWS KMS API requests to create, manage, or use AWS KMS resources. For example, you must have
permissions to create a KMS CMK, to manage the CMK, to use the CMK for cryptographic operations
(such as encryption and decryption), and so on.

The following pages describe how to manage permissions for AWS KMS. We recommend that you read
the overview first.

• Overview of Managing Access (p. 47)

• Using Key Policies (p. 50)

• Using IAM Policies (p. 67)

• AWS KMS API Permissions Reference (p. 76)

• Using Policy Conditions (p. 86)

• Using Grants (p. 115)

• Using Service-Linked Roles (p. 117)

• Determining Access (p. 118)

Overview of Managing Access to Your AWS KMS
Resources

Every AWS resource belongs to an AWS account, and permissions to create or access the resources are
defined in permissions policies in that account. An account administrator can attach permissions policies

47

https://aws.amazon.com/directoryservice/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_access-management.html#intro-access-roles
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_cross-account-with-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_cross-account-with-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html

AWS Key Management Service Developer Guide
AWS KMS Resources and Operations

to IAM identities (that is, users, groups, and roles), and some services (including AWS KMS) also support
attaching permissions policies to other kinds of resources.

Note
An account administrator (or administrator user) is a user with administrator permissions. For
more information, see Creating an Admin User and Group in the IAM User Guide.

When managing permissions, you decide who gets the permissions, the resources they get permissions
for, and the specific actions allowed.

Topics

• AWS KMS Resources and Operations (p. 48)

• Managing Access to AWS KMS CMKs (p. 48)

• Specifying Permissions in a Policy (p. 49)

• Specifying Conditions in a Policy (p. 50)

AWS KMS Resources and Operations
To manage permissions, you should understand some basic information about resources and operations.
In AWS KMS, the primary resource type is a customer master key (CMK). AWS KMS also supports another
resource type you can use with CMKs: an alias. An alias is a friendly name that points to a CMK. Some
AWS KMS operations allow you to specify a CMK by its alias.

These resource types have unique Amazon Resource Names (ARNs) associated with them, as shown in the
following list.

• Customer master key (CMK)

ARN format:

arn:AWS partition name:AWS Region:AWS account ID:key/CMK key ID

Example ARN:

arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

• Alias

ARN format:

arn:AWS partition name:AWS region:AWS account ID:alias/alias name

Example ARN:

arn:aws:kms:us-west-2:111122223333:alias/example-alias

AWS KMS provides a set of API operations to work with your AWS KMS resources. For a list of
available operations and the resources affected by each operation, see AWS KMS API Permissions
Reference (p. 76).

Managing Access to AWS KMS CMKs
The primary way to manage access to your AWS KMS CMKs is with policies. Policies are documents that
describe who has access to what. Policies attached to an IAM identity are called identity-based policies (or

48

https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html

AWS Key Management Service Developer Guide
Specifying Permissions in a Policy

IAM policies), and policies attached to other kinds of resources are called resource-based policies. In AWS
KMS, you must attach resource-based policies to your customer master keys (CMKs). These are called key
policies. All KMS CMKs have a key policy.

You can control access to your KMS CMKs in these ways:

• Use the key policy – You must use the key policy to control access to a CMK. You can use the key
policy alone to control access, which means the full scope of access to the CMK is defined in a single
document (the key policy).

• Use IAM policies in combination with the key policy – You can use IAM policies in combination with
the key policy to control access to a CMK. Controlling access this way enables you to manage all of the
permissions for your IAM identities in IAM.

• Use grants in combination with the key policy – You can use grants in combination with the key
policy to allow access to a CMK. Controlling access this way enables you to allow access to the CMK in
the key policy, and to allow users to delegate their access to others.

For most AWS services, IAM policies are the only way to control access to the service's resources. Some
services offer resource-based policies or other access control mechanisms to complement IAM policies,
but these are generally optional and you can control access to the resources in these services with only
IAM policies. This is not the case for AWS KMS, however. To allow access to a KMS CMK, you must use the
key policy, either alone or in combination with IAM policies or grants. IAM policies by themselves are not
sufficient to allow access to a CMK, though you can use them in combination with a CMK's key policy.

For more information about using key policies, see Using Key Policies (p. 50).

For more information about using IAM policies, see Using IAM Policies (p. 67).

For more information about using grants, see Using Grants (p. 115).

Specifying Permissions in a Policy
AWS KMS provides a set of API operations. To control access to these API operations, AWS KMS provides
a set of actions that you can specify in a policy. For more information, see AWS KMS API Permissions
Reference (p. 76).

A policy is a document that describes a set of permissions. The following are the basic elements of a
policy.

• Resource – In an IAM policy, you use an Amazon Resource Name (ARN) to specify the resource that the
policy applies to. For more information, see AWS KMS Resources and Operations (p. 48). In a key
policy, you use "*" for the resource, which effectively means "this CMK." A key policy applies only to
the CMK it is attached to.

• Action – You use actions to specify the API operations you want to allow or deny. For example, the
kms:Encrypt action corresponds to the AWS KMS Encrypt operation.

• Effect – You use the effect to specify whether to allow or deny the permissions. If you don't explicitly
allow access to a resource, access is implicitly denied. You can also explicitly deny access to a resource,
which you might do to make sure that a user cannot access it, even when a different policy allows
access.

49

https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html

AWS Key Management Service Developer Guide
Specifying Conditions in a Policy

• Principal – In an IAM policy, you don't specify a principal. Instead, the identity (the IAM user, group,
or role) that the policy is attached to is the implicit principal. In a key policy, you must specify the
principal (the identity) that the permissions apply to. You can specify AWS accounts (root), IAM users,
IAM roles, and some AWS services as principals in a key policy. IAM groups are not valid principals in a
key policy.

For more information, see Using Key Policies (p. 50) and Using IAM Policies (p. 67).

Specifying Conditions in a Policy
You can use another policy element called the condition to specify the circumstances in which a policy
takes effect. For example, you might want a policy statement to take effect only after a specific date. Or,
you might want a policy statement to control access based on whether a specific value exists in the API
request.

To specify conditions, you use predefined condition keys. Some condition keys apply generally to AWS,
and some are specific to AWS KMS. For more information, see Using Policy Conditions (p. 86).

Using Key Policies in AWS KMS
Key policies are the primary way to control access to customer master keys (CMKs) in AWS KMS. They are
not the only way to control access, but you cannot control access without them. For more information,
see Managing Access to AWS KMS CMKs (p. 48).

Topics

• Overview of Key Policies (p. 50)

• Default Key Policy (p. 51)

• Example Key Policy (p. 58)

Overview of Key Policies
A key policy is a document that uses JSON (JavaScript Object Notation) to specify permissions. You
can work with these JSON documents directly, or you can use the AWS Management Console to work
with them using a graphical interface called the default view. For more information about the console's
default view for key policies, see Default Key Policy (p. 51) and Changing a Key Policy (p. 64).

A key policy document cannot exceed 32 KB (32,768 bytes). Key policy documents use the same JSON
syntax as other permissions policies in AWS and have the following basic structure:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Sid": "statement identifier",
 "Effect": "effect",
 "Principal": "principal",
 "Action": "action",
 "Resource": "resource",
 "Condition": {"condition operator": {"condition context key": "context key value"}}
 }]

50

http://json.org/

AWS Key Management Service Developer Guide
Default Key Policy

}

A key policy document must have a Version element. We recommend setting the version to
2012-10-17 (the latest version). In addition, a key policy document must have one or more statements,
and each statement consists of up to six elements:

• Sid – (Optional) The Sid is a statement identifier, an arbitrary string you can use to identify the
statement.

• Effect – (Required) The effect specifies whether to allow or deny the permissions in the policy
statement. The Effect must be Allow or Deny. If you don't explicitly allow access to a CMK, access is
implicitly denied. You can also explicitly deny access to a CMK. You might do this to make sure that a
user cannot access it, even when a different policy allows access.

• Principal – (Required) The principal is the identity that gets the permissions specified in the policy
statement. You can specify AWS accounts (root), IAM users, IAM roles, and some AWS services as
principals in a key policy. IAM groups are not valid principals.

Note
Do not set the Principal to an asterisk (*) in any key policy statement that allows permissions.
An asterisk gives every identity in every AWS account permission to use the CMK, unless
another policy statement explicitly denies it. Users in other AWS accounts just need
corresponding IAM permissions in their own accounts to use the CMK.

• Action – (Required) Actions specify the API operations to allow or deny. For example, the
kms:Encrypt action corresponds to the AWS KMS Encrypt operation. You can list more than one
action in a policy statement. For more information, see AWS KMS API Permissions Reference (p. 76).

• Resource – (Required) In a key policy, you use "*" for the resource, which means "this CMK." A key
policy applies only to the CMK it is attached to.

• Condition – (Optional) Conditions specify requirements that must be met for a key policy to take
effect. With conditions, AWS can evaluate the context of an API request to determine whether or not
the policy statement applies. For more information, see Using Policy Conditions (p. 86).

For more information about AWS policy syntax, see AWS IAM Policy Reference in the IAM User Guide.

Default Key Policy
Default key policy when you create a CMK programmatically

When you create a CMK programmatically—that is, with the AWS KMS API (including through the AWS
SDKs and command line tools)—you have the option of providing the key policy for the new CMK. If you
don't provide one, AWS KMS creates one for you. This default key policy has one policy statement that
gives the AWS account (root user) that owns the CMK full access to the CMK and enables IAM policies in
the account to allow access to the CMK. For more information about this policy statement, see Allows
Access to the AWS Account and Enables IAM Policies (p. 52).

Default key policy when you create a CMK with the AWS Management Console

When you create a CMK with the AWS Management Console (p. 17), you can choose the IAM users,
IAM roles, and AWS accounts that are given access to the CMK. The users, roles, and accounts that you
choose are added to a default key policy that the console creates for you. With the console, you can
use the default view to view or modify this key policy, or you can work with the key policy document
directly. The default key policy created by the console allows the following permissions, each of which is
explained in the corresponding section.

Permissions

• Allows Access to the AWS Account and Enables IAM Policies (p. 52)
• Allows Key Administrators to Administer the CMK (p. 52)

51

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html#Principal_specifying
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
https://docs.aws.amazon.com/kms/latest/APIReference/
https://aws.amazon.com/tools/#sdk
https://aws.amazon.com/tools/#sdk
https://aws.amazon.com/tools/#cli

AWS Key Management Service Developer Guide
Default Key Policy

• Allows Key Users to Use the CMK (p. 54)
• Allows Key Users to Use a CMK for Cryptographic Operations (p. 56)
• Allows Key Users to Use the CMK with AWS Services (p. 57)

Allows Access to the AWS Account and Enables IAM Policies
The default key policy gives the AWS account (root user) that owns the CMK full access to the CMK,
which accomplishes the following two things.

1. Reduces the risk of the CMK becoming unmanageable.

You cannot delete your AWS account's root user, so allowing access to this user reduces the risk of
the CMK becoming unmanageable. Consider this scenario:
1. A CMK's key policy allows only one IAM user, Alice, to manage the CMK. This key policy does not

allow access to the root user.
2. Someone deletes IAM user Alice.

In this scenario, the CMK is now unmanageable, and you must contact AWS Support to regain access
to the CMK. The root user does not have access to the CMK, because the root user can access a CMK
only when the key policy explicitly allows it. This is different from most other resources in AWS,
which implicitly allow access to the root user.

2. Enables IAM policies to allow access to the CMK.

IAM policies by themselves are not sufficient to allow access to a CMK. However, you can use them
in combination with a CMK's key policy if the key policy enables it. Giving the AWS account full
access to the CMK does this; it enables you to use IAM policies to give IAM users and roles in the
account access to the CMK. It does not by itself give any IAM users or roles access to the CMK, but it
enables you to use IAM policies to do so. For more information, see Managing Access to AWS KMS
CMKs (p. 48).

The following example shows the policy statement that allows access to the AWS account and thereby
enables IAM policies.

{
 "Sid": "Enable IAM User Permissions",
 "Effect": "Allow",
 "Principal": {"AWS": "arn:aws:iam::111122223333:root"},
 "Action": "kms:*",
 "Resource": "*"
}

Allows Key Administrators to Administer the CMK
The default key policy created by the console allows you to choose IAM users and roles in the account
and make them key administrators. Key administrators have permissions to manage the CMK, but do not
have permissions to use the CMK in cryptographic operations.

Warning
Even though key administrators do not have permissions to use the CMK to encrypt and decrypt
data, they do have permission to change the key policy. This means they can give themselves
any AWS KMS permission.

You can add IAM users and roles to the list of key administrators when you create the CMK. You can also
edit the list with the console's default view for key policies, as shown in the following image. The default
view for key policies is available on the key details page for each CMK.

52

https://console.aws.amazon.com/support/home#/case/create

AWS Key Management Service Developer Guide
Default Key Policy

When you use the console's default view to modify the list of key administrators, the console modifies
the Principal element in a particular statement in the key policy. This statement is called the key
administrators statement. The following example shows the key administrators statement.

{
 "Sid": "Allow access for Key Administrators",
 "Effect": "Allow",
 "Principal": {"AWS": [
 "arn:aws:iam::111122223333:user/KMSAdminUser",
 "arn:aws:iam::111122223333:role/KMSAdminRole"
]},
 "Action": [
 "kms:Create*",
 "kms:Describe*",
 "kms:Enable*",
 "kms:List*",
 "kms:Put*",
 "kms:Update*",
 "kms:Revoke*",
 "kms:Disable*",
 "kms:Get*",
 "kms:Delete*",
 "kms:TagResource",
 "kms:UntagResource",
 "kms:ScheduleKeyDeletion",
 "kms:CancelKeyDeletion"
],
 "Resource": "*"
}

The key administrators statement allows the following permissions:

53

AWS Key Management Service Developer Guide
Default Key Policy

• kms:Create* – Allows key administrators to create aliases and grants (p. 115) for this CMK.
• kms:Describe* – Allows key administrators to get information about this CMK including its identifiers,

creation date, state, and more. This permission is necessary to view the key details page in the AWS
Management Console.

• kms:Enable* – Allows key administrators to set this CMK's state to enabled. For symmetric CMKs, it
allows key administrators to specify annual rotation of the CMK's key material (p. 142).

• kms:List* – Allows key administrators to get lists of the aliases, grants, key policies, and tags for this
CMK. This permission is necessary to view the list of CMKs in the AWS Management Console.

• kms:Put* – Allows key administrators to change the key policy for this CMK.
• kms:Update* – Allows key administrators to change the target of an alias to this CMK, and to change

this CMK's description.
• kms:Revoke* – Allows key administrators to revoke the permissions for this CMK that are allowed by a

grant (p. 115).
• kms:Disable* – Allows key administrators to set this CMK's key state to disabled. For symmetric CMKs,

it allows key administrators to disable annual rotation of this CMK's key material (p. 142).
• kms:Get* – Allows key administrators to get the key policy for this CMK and to determine whether

this CMK's key material is rotated annually. For symmetric CMKs (p. 130) with imported key
material (p. 147), it also allows key administrators to download the import token and public key
that they need to import key material into the CMK. For asymmetric CMKs (p. 130), it allows key
administrators to download the public key (p. 43) of the CMK.

• kms:Delete* – Allows key administrators to delete an alias that points to this CMK. For symmetric
CMKs with imported key material (p. 147), it lets the key administrator, delete the imported key
material. Note that this permission does not allow key administrators to delete the CMK (p. 160).

• kms:ImportKeyMaterial – Allows key administrators to import key material into the CMK. This
permission is included in the key policy only when you create a CMK with no key material (p. 150).

Note
This permission is not shown in the preceding example policy statement.

• kms:TagResource – Allows key administrators to add and update tags for this CMK.
• kms:UntagResource – Allows key administrators to remove tags from this CMK.
• kms:ScheduleKeyDeletion – Allows key administrators to delete this CMK (p. 160).
• kms:CancelKeyDeletion – Allows key administrators to cancel the pending deletion of this CMK.

The final two permissions in the preceding list, kms:ScheduleKeyDeletion and
kms:CancelKeyDeletion, are included by default when you create a CMK (p. 17). However, you can
optionally remove them from the key policy when you create a CMK by clearing the box for Allow key
administrators to delete this key. In the same way, you can use the key details page to remove them
from the default key policy for existing CMKs. For more information, see Editing Keys (p. 36).

Many of these permissions contain the wildcard character (*). That means that if AWS KMS adds new
API operations in the future, key administrators will automatically be allowed to perform all new API
operations that begin with Create, Describe, Enable, List, Put, Update, Revoke, Disable, Get, or Delete.

Note
The key administrators statement described in the preceding section is in the latest version of
the default key policy. For information about previous versions of the default key policy, see
Keeping Key Policies Up to Date (p. 66).

Allows Key Users to Use the CMK
The default key policy that the console creates for symmetric CMKs allows you to choose IAM users and
roles in the account, and external AWS accounts, and make them key users.

The console adds two policy statements to the key policy for key users.

54

AWS Key Management Service Developer Guide
Default Key Policy

• Use the CMK directly (p. 56) — The first key policy statement gives key users have permission to use
the CMK directly for all supported cryptographic operations for that type of CMK.

• Use the CMK with AWS services (p. 57) — The second policy statement gives key users permission
to allow AWS services that are integrated with AWS KMS to use the CMK on their behalf to protect
resources, such as Amazon Simple Storage Service buckets (p. 265) and Amazon DynamoDB
tables (p. 233).

You can add IAM users, IAM roles, and other AWS accounts to the list of key users when you create
the CMK. You can also edit the list with the console's default view for key policies, as shown in the
following image. The default view for key policies is on the key details page. For more information about
allowing users in other AWS accounts to use the CMK, see Allowing Users in Other Accounts to Use a
CMK (p. 71).

When you use the console's default view to change the list of key users, the console changes the
Principal element in two statements in the key policy. These statements are called the key users
statements. The following examples show the key users statements for symmetric CMKs.

{
 "Sid": "Allow use of the key",
 "Effect": "Allow",
 "Principal": {"AWS": [
 "arn:aws:iam::111122223333:user/CMKUser",
 "arn:aws:iam::111122223333:role/CMKRole",
 "arn:aws:iam::444455556666:root"
]},
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:DescribeKey"
],
 "Resource": "*"
},
{
 "Sid": "Allow attachment of persistent resources",
 "Effect": "Allow",
 "Principal": {"AWS": [

55

AWS Key Management Service Developer Guide
Default Key Policy

 "arn:aws:iam::111122223333:user/CMKUser",
 "arn:aws:iam::111122223333:role/CMKRole",
 "arn:aws:iam::444455556666:root"
]},
 "Action": [
 "kms:CreateGrant",
 "kms:ListGrants",
 "kms:RevokeGrant"
],
 "Resource": "*",
 "Condition": {"Bool": {"kms:GrantIsForAWSResource": true}}
}

Allows Key Users to Use a CMK for Cryptographic Operations
Key users have permission to use the CMK directly in all cryptographic operations supported on the CMK.
They can also use the DescribeKey operation to get detailed information about the CMK in the AWS KMS
console or by using the AWS KMS API operations.

By default, the AWS KMS console adds key users statements like those in the following examples to the
default key policy. Because they support different API operations, the actions in the policy statements
for symmetric CMKs, asymmetric CMKs for public key encryption, and asymmetric CMKs for signing and
verification are slightly different.

Note
Asymmetric CMKs and asymmetric data key pairs are supported by AWS KMS only in the
following AWS Regions: US East (N. Virginia), US West (Oregon), Asia Pacific (Sydney), Asia
Pacific (Tokyo), and Europe (Ireland).

Symmetric CMKs

The console adds the following statement to the key policy for symmetric CMKs.

{
 "Sid": "Allow use of the key",
 "Effect": "Allow",
 "Principal": {"AWS": "arn:aws:iam::111122223333:user/CMKUser"},
 "Action": [
 "kms:Decrypt",
 "kms:DescribeKey",
 "kms:Encrypt",
 "kms:GenerateDataKey*",
 "kms:ReEncrypt*"
],
 "Resource": "*"
}

Asymmetric CMKs for Public Key Encryption

The console adds the following statement to the key policy for asymmetric CMKs with a key usage of
Encrypt and decrypt.

{
 "Sid": "Allow use of the key",
 "Effect": "Allow",
 "Principal": {"AWS": "arn:aws:iam::111122223333:user/CMKUser"},
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:DescribeKey",

56

https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html

AWS Key Management Service Developer Guide
Default Key Policy

 "kms:GetPublicKey"
],
 "Resource": "*"
}

Asymmetric CMKs for Signing and Verification

The console adds the following statement to the key policy for asymmetric CMKs with a key usage of
Sign and verify.

{
 "Sid": "Allow use of the key",
 "Effect": "Allow",
 "Principal": {"AWS": "arn:aws:iam::111122223333:user/CMKUser"},
 "Action": [
 "kms:DescribeKey",
 "kms:GetPublicKey",
 "kms:Sign",
 "kms:Verify"
],
 "Resource": "*"
}

The actions in these statements give the key users some of the following permissions.

• kms:Encrypt – Allows key users to encrypt data with this CMK.

• kms:Decrypt – Allows key users to decrypt data with this CMK.

• kms:DescribeKey – Allows key users to get detailed information about this CMK including its identifiers,
creation date, and key state. It also allows the key users to display details about the CMK in the AWS
KMS console.

•

• kms:GenerateDataKey* – Allows key users to request a symmetric data key or an asymmetric data key
pair for client-side cryptographic operations. The console uses the * wildcard character to represent
permission for the following API operations: GenerateDataKey, GenerateDataKeyWithoutPlaintext,
GenerateDataKeyPair, and GenerateDataKeyPairWithoutPlaintext.

• kms:GetPublicKey – Allows key users to download the public key of the asymmetric CMK. Parties with
whom you share this public key can encrypt data outside of AWS KMS. However, those ciphertexts can
be decrypted only by calling the Decrypt operation in AWS KMS.

• kms:ReEncrypt* – Allows key users to re-encrypt data that was originally encrypted with this CMK,
or to use this CMK to re-encrypt previously encrypted data. The ReEncrypt operation requires access
to both source and destination CMKs. To accomplish this, you can allow the kms:ReEncryptFrom
permission on the source CMK and kms:ReEncryptTo permission on the destination CMK. However,
for simplicity, the console allows kms:ReEncrypt* (with the * wildcard character) on both CMKs.

• kms:Sign – Allows key users to sign messages with this CMK.

• kms:Verify – Allows key users to verify signatures with this CMK.

Allows Key Users to Use the CMK with AWS Services
The default key policy in the console also gives key users permission to allow AWS services that are
integrated with AWS KMS (p. 228) to use the CMK, particularly services that use grants.

Key users can implicitly give these services permissions to use the CMK in specific and limited ways. This
implicit delegation is done using grants (p. 115). These grants allow the integrated AWS service to use
the CMK to protect resources in the account.

57

https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyPair.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyPairWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Sign.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Verify.html

AWS Key Management Service Developer Guide
Example Key Policy

{
 "Sid": "Allow attachment of persistent resources",
 "Effect": "Allow",
 "Principal": {"AWS": "arn:aws:iam::111122223333:user/CMKUser"},
 "Action": [
 "kms:CreateGrant",
 "kms:ListGrants",
 "kms:RevokeGrant"
],
 "Resource": "*",
 "Condition": {"Bool": {"kms:GrantIsForAWSResource": true}}
}

For example, key users can use these permissions on the CMK in the following ways.

• Use this CMK with Amazon Elastic Block Store (Amazon EBS) and Amazon Elastic Compute Cloud
(Amazon EC2) to attach an encrypted EBS volume to an EC2 instance. The key user implicitly gives
Amazon EC2 permission to use the CMK to attach the encrypted volume to the instance. For more
information, see How Amazon Elastic Block Store (Amazon EBS) Uses AWS KMS (p. 243).

• Use this CMK with Amazon Redshift to launch an encrypted cluster. The key user implicitly gives
Amazon Redshift permission to use the CMK to launch the encrypted cluster and create encrypted
snapshots. For more information, see How Amazon Redshift Uses AWS KMS (p. 253).

• Use this CMK with other AWS services integrated with AWS KMS (p. 228), specifically the services
that use grants, to create, manage, or use encrypted resources with those services.

The kms:GrantIsForAWSResource (p. 104) condition key allows key users to create and manage grants,
but only when the grantee is an AWS service that uses grants. The permission allows key users to
use all of the integrated services that use grants. However, you can create a custom key policy that
allows particular AWS services to use the CMK on the key user's behalf. For more information, see the
kms:ViaService (p. 111) condition key.

Key users need these grant permissions to use their CMK with integrated services, but these permissions
are not sufficient. Key users also need permission to use the integrated services. For details about
giving users access to an AWS service that integrates with AWS KMS, consult the documentation for the
integrated service.

Example Key Policy
The following example shows a complete key policy for a symmetric CMK. This key policy combines the
example policy statements from the preceding default key policy (p. 51) section into a single key
policy that accomplishes the following:

• Allows the AWS account (root user) 111122223333 full access to the CMK, and thus enables IAM
policies in the account to allow access to the CMK.

• Allows IAM user KMSAdminUser and IAM role KMSAdminRole to administer the CMK.
• Allows IAM user CMKUser, IAM role CMKRole, and AWS account 444455556666 to use the CMK.

{
 "Version": "2012-10-17",
 "Id": "key-consolepolicy-2",
 "Statement": [
 {
 "Sid": "Enable IAM User Permissions",
 "Effect": "Allow",
 "Principal": {"AWS": "arn:aws:iam::111122223333:root"},
 "Action": "kms:*",

58

AWS Key Management Service Developer Guide
Example Key Policy

 "Resource": "*"
 },
 {
 "Sid": "Allow access for Key Administrators",
 "Effect": "Allow",
 "Principal": {"AWS": [
 "arn:aws:iam::111122223333:user/KMSAdminUser",
 "arn:aws:iam::111122223333:role/KMSAdminRole"
]},
 "Action": [
 "kms:Create*",
 "kms:Describe*",
 "kms:Enable*",
 "kms:List*",
 "kms:Put*",
 "kms:Update*",
 "kms:Revoke*",
 "kms:Disable*",
 "kms:Get*",
 "kms:Delete*",
 "kms:TagResource",
 "kms:UntagResource",
 "kms:ScheduleKeyDeletion",
 "kms:CancelKeyDeletion"
],
 "Resource": "*"
 },
 {
 "Sid": "Allow use of the key",
 "Effect": "Allow",
 "Principal": {"AWS": [
 "arn:aws:iam::111122223333:user/CMKUser",
 "arn:aws:iam::111122223333:role/CMKRole",
 "arn:aws:iam::444455556666:root"
]},
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:DescribeKey"
],
 "Resource": "*"
 },
 {
 "Sid": "Allow attachment of persistent resources",
 "Effect": "Allow",
 "Principal": {"AWS": [
 "arn:aws:iam::111122223333:user/CMKUser",
 "arn:aws:iam::111122223333:role/CMKRole",
 "arn:aws:iam::444455556666:root"
]},
 "Action": [
 "kms:CreateGrant",
 "kms:ListGrants",
 "kms:RevokeGrant"
],
 "Resource": "*",
 "Condition": {"Bool": {"kms:GrantIsForAWSResource": "true"}}
 }
]
}

The following image shows an example of what this key policy looks like when viewed with the console's
default view for key policies.

59

AWS Key Management Service Developer Guide
Example Key Policy

60

AWS Key Management Service Developer Guide
Viewing a Key Policy

Viewing a Key Policy
You can view the key policy for an AWS KMS customer managed CMK (p. 3) or an AWS managed
CMK (p. 4) in your account by using the AWS Management Console or the GetKeyPolicy operation in
the AWS KMS API. You cannot use these techniques to view the key policy of a CMK in a different AWS
account.

To learn more about AWS KMS key policies, see Using Key Policies in AWS KMS (p. 50). To learn
how to determine which users and roles have access to a CMK, see the section called “Determining
Access” (p. 118).

Topics

• Viewing a Key Policy (Console) (p. 61)

• Viewing a Key Policy (KMS API) (p. 63)

Viewing a Key Policy (Console)

Authorized users can view the key policy for an AWS managed CMK (p. 4) or a customer managed
CMK (p. 3) on the Key policy tab of the AWS Management Console.

To view the key policy for a CMK in the AWS Management Console, you must have kms:ListAliases,
kms:DescribeKey, and kms:GetKeyPolicy permissions.

1. Sign in to the AWS Management Console and open the AWS Key Management Service (AWS KMS)
console at https://console.aws.amazon.com/kms.

2. To change the AWS Region, use the Region selector in the upper-right corner of the page.

3. To view the keys in your account that AWS creates and manages for you, in the navigation pane,
choose AWS managed keys. To view the keys in your account that you create and manage, in the
navigation pane choose Customer managed keys.

4. In the list of CMKs, choose the alias or key ID of the CMK that you want to examine.

5. Choose the Key policy tab.

In the Key policy section, you might see the key policy document. This is policy view. In the key
policy statements, you can see the principals who have been given access to the CMK by the key
policy, and you can see the actions they can perform.

The following example shows the policy view for the default key policy (p. 51).

61

https://docs.aws.amazon.com/kms/latest/APIReference/API_GetKeyPolicy.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ListAliases.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetKeyPolicy.html
https://console.aws.amazon.com/kms

AWS Key Management Service Developer Guide
Viewing a Key Policy

Or, if you created the CMK in the AWS Management Console, you will see the default view with
sections for Key administrators, Key deletion, and Key Users. To see the key policy document,
choose Switch to policy view.

The following example shows the default view for the default key policy (p. 51).

62

AWS Key Management Service Developer Guide
Viewing a Key Policy

Viewing a Key Policy (KMS API)

To get the key policy for an AWS managed CMK (p. 4) or a customer managed CMK (p. 3) in your AWS
account, use the GetKeyPolicy operation in the AWS KMS API. You cannot use this operation to view a
key policy in a different account.

The following example uses the get-key-policy command in the AWS Command Line Interface (AWS CLI),
but you can use any AWS SDK to make this request.

63

https://docs.aws.amazon.com/kms/latest/APIReference/API_GetKeyPolicy.html
https://docs.aws.amazon.com/cli/latest/reference/kms/get-key-policy.html

AWS Key Management Service Developer Guide
Changing a Key Policy

Note that the PolicyName parameter is required even though default is its only valid value. Also, this
command requests the output in text, rather than JSON, to make it easier to view.

Before running this command, replace the example key ID with a valid one from your account.

$ aws kms get-key-policy --key-id 1234abcd-12ab-34cd-56ef-1234567890ab --policy-name
 default --output text

The response should be similar to the following one, which returns the default key policy (p. 51).

{
 "Version" : "2012-10-17",
 "Id" : "key-consolepolicy-3",
 "Statement" : [{
 "Sid" : "Enable IAM User Permissions",
 "Effect" : "Allow",
 "Principal" : {
 "AWS" : "arn:aws:iam::111122223333:root"
 },
 "Action" : "kms:*",
 "Resource" : "*"
 }]
}

Changing a Key Policy
You can change the key policy for a customer master key (CMK) in your AWS account by using the AWS
Management Console or the PutKeyPolicy operation. You cannot use these techniques to change the key
policy of a CMK in a different AWS account.

When changing a key policy, keep in mind the following rules:

• You can view the key policy for an AWS managed CMK (p. 4) or a customer managed CMK (p. 3), but
you can only change the key policy for a customer managed CMK. The policies of AWS managed CMKs
are created and managed by the AWS service that created the CMK in your account.

• You can add or remove IAM users, IAM roles, and AWS accounts (root users) in the key policy, and

change the actions that are allowed or denied for those principals. For more information about the
ways to specify principals and permissions in a key policy, see Using Key Policies (p. 50).

• You cannot add IAM groups to a key policy, but you can add multiple IAM users. For more information,

see Allowing Multiple IAM Users to Access a CMK (p. 66).

• If you add external AWS accounts to a key policy, you must also use IAM policies in the external

accounts to give permissions to IAM users, groups, or roles in those accounts. For more information,
see Allowing Users in Other Accounts to Use a CMK (p. 71).

• The resulting key policy document cannot exceed 32 KB (32,768 bytes).

Topics
• How to Change a Key Policy (p. 65)
• Allowing Multiple IAM Users to Access a CMK (p. 66)

64

https://docs.aws.amazon.com/kms/latest/APIReference/API_PutKeyPolicy.html

AWS Key Management Service Developer Guide
Changing a Key Policy

How to Change a Key Policy
You can change a key policy in three different ways, each of which is explained in the following sections.

Topics

• Using the AWS Management Console Default View (p. 65)

• Using the AWS Management Console Policy View (p. 65)

• Using the AWS KMS API (p. 65)

Using the AWS Management Console Default View

You can use the console to change a key policy with a graphical interface called the default view.

If the following steps don't match what you see in the console, it might mean that this key policy was
not created by the console. Or it might mean that the key policy has been modified in a way that the
console's default view does not support. In that case, follow the steps at Using the AWS Management
Console Policy View (p. 65) or Using the AWS KMS API (p. 65).

1. View the key policy for a customer managed CMK as decribed in Viewing a Key Policy
(Console) (p. 61). (You cannot change the key policies of AWS managed keys.)

2. Decide what to change.

• To add or remove key administrators (p. 52), and to allow or prevent key administrators from
deleting the CMK (p. 160), use the controls in the Key administrators section of the page. Key
administrators manage the CMK, including enabling and disabling it, setting key policy, and
enabling key rotation (p. 142).

• To add or remove key users (p. 54), and to allow or disallow external AWS accounts to use
the CMK, use the controls in the Key users section of the page. Key users can use the CMK in
cryptographic operations, such as encrypting, decrypting, re-encrypting, and generating data
keys.

Using the AWS Management Console Policy View

You can use the console to change a key policy document with the console's policy view.

1. View the key policy for a customer managed CMK as decribed in Viewing a Key Policy
(Console) (p. 61). (You cannot change the key policies of AWS managed keys.)

2. In the Key Policy section, choose Switch to policy view.

3. Edit the key policy document, and then choose Save changes.

Using the AWS KMS API

You can use the PutKeyPolicy operation to change the key policy of a CMK in your AWS account. You
cannot use this API on a CMK in a different AWS account.

1. Use the GetKeyPolicy operation to get the existing key policy document, and then save the key
policy document to a file. For sample code in multiple programming languages, see Getting a Key
Policy (p. 332).

2. Open the key policy document in your preferred text editor, edit the key policy document, and then
save the file.

3. Use the PutKeyPolicy operation to apply the updated key policy document to the CMK. For sample
code in multiple programming languages, see Setting a Key Policy (p. 334).

65

url-kms-api;API_PutKeyPolicy.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetKeyPolicy.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_PutKeyPolicy.html

AWS Key Management Service Developer Guide
Keeping Key Policies Up to Date

For an example of copying a key policy from one CMK to another, see the GetKeyPolicy example in the
AWS CLI Command Reference.

Allowing Multiple IAM Users to Access a CMK
IAM groups are not valid principals in a key policy. To allow multiple IAM users to access a CMK, do one of
the following:

• Add each IAM user to the key policy. This approach requires that you update the key policy each time
the list of authorized users changes.

• Ensure that the key policy includes the statement that enables IAM policies to allow access to the
CMK (p. 52). Then create an IAM policy that allows access to the CMK, and then attach that policy to
an IAM group that contains the authorized IAM users. Using this approach, you don't need to change
any policies when the list of authorized users changes. Instead, you only need to add or remove those
users from the appropriate IAM group.

For more information about how AWS KMS key policies and IAM policies work together, see
Troubleshooting Key Access (p. 123).

Keeping Key Policies Up to Date
When you use the AWS Management Console to create a customer master key (CMK) (p. 17), you can
choose the IAM users, IAM roles, and AWS accounts that you want to have access to the CMK. These
users, roles, and accounts are added to a default key policy (p. 51) that controls access to the CMK.
Occasionally, the default key policy for new CMKs is updated. Typically, these updates correspond to new
AWS KMS features.

When you create a new CMK, the latest version of the default key policy is added to the CMK. However,
existing CMKs continue to use their existing key policy—that is, new versions of the default key policy
are not automatically applied to existing CMKs. Instead, the console alerts you that a newer version is
available and prompts you to upgrade it.

Note
The console alerts you only when you are using the default key policy that was applied when
you created the CMK. If you manually modified the key policy document using the console's
policy view or the PutKeyPolicy operation, the console does not alert you when new permissions
are available.

For information about the permissions that are added to a key policy when you upgrade it, see Changes
to the Default Key Policy (p. 67). Upgrading to the latest version of the key policy should not cause
problems because it only adds permissions; it doesn't remove any. We recommend keeping your key
policies up to date unless you have a specific reason not to.

Determining whether a newer version of the default key policy
is available
You can use the AWS Management Console to learn whether a newer version of the default key policy is
available.

1. Sign in to the AWS Management Console and open the AWS Key Management Service (AWS KMS)
console at https://console.aws.amazon.com/kms.

2. To change the AWS Region, use the Region selector in the upper-right corner of the page.

3. In the navigation pane, choose Customer managed keys.

4. Choose the alias or key ID of a CMK that uses the default key policy.

66

https://docs.aws.amazon.com/cli/latest/reference/kms/get-key-policy.html#examples
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-using.html#create-managed-policy-console
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-using.html#attach-managed-policy-console
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-using.html#attach-managed-policy-console
https://docs.aws.amazon.com/kms/latest/APIReference/API_PutKeyPolicy.html
https://console.aws.amazon.com/kms

AWS Key Management Service Developer Guide
Using IAM Policies

5. Scroll down to the Key policy section of the page.

When a newer version of the default key policy is available, the console displays the following alert.

A newer version of the default key policy is available. Preview and upgrade to the new key
policy.

Upgrading to the latest version of the default key policy
When a new default key policy is available, the following alert is displayed in the Key Policy section of
the console page.

A newer version of the default key policy is available. Preview and upgrade to the new key policy.

To upgrade to the latest version of the default key policy

1. If you see an alert announcing a newer version of the default key policy, choose Preview and
upgrade to the new key policy.

2. Review the key policy document for the latest version of the default key policy. For more
information about the difference between the latest version and previous versions, see Changes to
the Default Key Policy (p. 67). After reviewing the key policy, choose Upgrade key policy.

Changes to the Default Key Policy
In the current version of the default key policy (p. 51), the key administrators statement contains more
permissions than those in previous versions. These additional permissions correspond to new AWS KMS
features.

CMKs that use an earlier version of the default key policy might be missing the following permissions.
When you upgrade to the latest version of the default key policy, they're added to the key administrators
statement.

kms:TagResource and kms:UntagResource

These permissions allow key administrators to add, update, and remove tags from the CMK. They
were added to the default key policy when AWS KMS released the tagging feature (p. 39).

kms:ScheduleKeyDeletion and kms:CancelKeyDeletion

These permissions allow key administrators to schedule and cancel deletion for the CMK. They were
added to the default key policy when AWS KMS released the CMK deletion feature (p. 160).

Note
The kms:ScheduleKeyDeletion and kms:CancelKeyDeletion permissions are
included by default when you create a CMK (p. 17) and when you upgrade to the latest
version of the default key policy. However, you can optionally remove them from the
default key policy when you create a CMK by clearing the box for Allow key administrators
to delete this key. In the same way, you can use the key details page to remove them from
the default key policy for existing CMKs. That includes CMKs whose key policy you upgraded
to the latest version.

Using IAM Policies with AWS KMS
You can use IAM policies in combination with key policies (p. 50) to control access to your customer
master keys (CMKs) in AWS KMS.

67

AWS Key Management Service Developer Guide
Overview of IAM Policies

Note
This section discusses using IAM in the context of AWS KMS. It doesn't provide detailed
information about the IAM service. For complete IAM documentation, see the IAM User Guide.

Policies attached to IAM identities (that is, users, groups, and roles) are called identity-based policies (or
IAM policies), and policies attached to resources outside of IAM are called resource-based policies. In AWS
KMS, you must attach resource-based policies to your CMKs. These are called key policies. All KMS CMKs
have a key policy, and you must use it to control access to a CMK. IAM policies by themselves are not
sufficient to allow access to a CMK, though you can use them in combination with a CMK's key policy. To
do so, ensure that CMK's key policy includes the policy statement that enables IAM policies (p. 52).

Topics
• Overview of IAM Policies (p. 68)
• Permissions Required to Use the AWS KMS Console (p. 68)
• AWS Managed (Predefined) Policies for AWS KMS (p. 69)
• Customer Managed Policy Examples (p. 69)

Overview of IAM Policies
You can use IAM policies in the following ways:

• Attach a permissions policy to a user or a group – You can attach a policy that allows an IAM user or
group of users to, for example, create new CMKs.

• Attach a permissions policy to a role for federation or cross-account permissions – You can attach
an IAM policy to an IAM role to enable identity federation, allow cross-account permissions, or give
permissions to applications running on EC2 instances. For more information about the various use
cases for IAM roles, see IAM Roles in the IAM User Guide.

The following example shows an IAM policy with AWS KMS permissions. This policy allows the IAM
identities to which it is attached to retrieve a list of all CMKs and aliases.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "kms:ListKeys",
 "kms:ListAliases"
],
 "Resource": "*"
 }
}

This policy doesn't specify the Principal element because in IAM policies you don't specify the
principal who gets the permissions. When you attach this policy to an IAM user, that user is the implicit
principal. When you attach this policy to an IAM role, the assumed role user gets the permissions.

For a table showing all of the AWS KMS API actions and the resources that they apply to, see the AWS
KMS API Permissions Reference (p. 76).

Permissions Required to Use the AWS KMS Console
To work with the AWS KMS console, users must have a minimum set of permissions that allow them to
work with the AWS KMS resources in their AWS account. In addition to these AWS KMS permissions, users
must also have permissions to list IAM users and roles. If you create an IAM policy that is more restrictive

68

https://docs.aws.amazon.com/IAM/latest/UserGuide/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

AWS Key Management Service Developer Guide
AWS Managed (Predefined) Policies for AWS KMS

than the minimum required permissions, the AWS KMS console won't function as intended for users with
that IAM policy.

For the minimum permissions required to allow a user read-only access to the AWS KMS console, see
Allow a User Read-Only Access to All CMKs through the AWS KMS Console (p. 69).

To allow users to work with the AWS KMS console to create and manage CMKs, attach the
AWSKeyManagementServicePowerUser managed policy to the user, as described in the following
section.

You don't need to allow minimum console permissions for users that are working with the AWS KMS API
through the AWS SDKs or command line tools, though you do need to grant these users permission to
use the API. For more information, see AWS KMS API Permissions Reference (p. 76).

AWS Managed (Predefined) Policies for AWS KMS
AWS addresses many common use cases by providing standalone IAM policies that are created and
managed by AWS. These are called AWS managed policies. AWS managed policies provide the necessary
permissions for common use cases so you don't have to investigate which permissions are needed. For
more information, see AWS Managed Policies in the IAM User Guide.

AWS provides one AWS managed policy for AWS KMS called AWSKeyManagementServicePowerUser. This
policy allows the following permissions:

• Allows users to list all CMKs and aliases.
• Allows users to retrieve information about each CMK, including its identifiers, creation date, rotation

status, key policy, and more.
• Allows users to create CMKs that they can administer or use. When users create a CMK, they

can set permissions in the CMK's key policy (p. 50). This means users can create CMKs with
any permissions they want, including allowing themselves to administer or use the CMK. The
AWSKeyManagementServicePowerUser policy does not allow users to administer or use any other
CMKs, only the ones they create.

Customer Managed Policy Examples
In this section, you can find example IAM policies that allow permissions for various AWS KMS actions.

Important
Some of the permissions in the following policies are allowed only when the CMK's key policy
also allows them. For more information, see AWS KMS API Permissions Reference (p. 76).

Examples
• Allow a User Read-Only Access to All CMKs through the AWS KMS Console (p. 69)
• Allow a User to Encrypt and Decrypt with Any CMK in a Specific AWS Account (p. 70)
• Allow a User to Encrypt and Decrypt with Any CMK in a Specific AWS Account and Region (p. 70)
• Allow a User to Encrypt and Decrypt with Specific CMKs (p. 71)
• Prevent a User from Disabling or Deleting Any CMKs (p. 71)

Allow a User Read-Only Access to All CMKs through the AWS
KMS Console
The following policy allows users read-only access to the AWS KMS console. That is, users can use the
console to view all CMKs, but they cannot make changes to any CMKs or create new ones.

69

https://aws.amazon.com/tools/#sdk
https://aws.amazon.com/tools/#cli
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AWSKeyManagementServicePowerUser

AWS Key Management Service Developer Guide
Customer Managed Policy Examples

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "kms:DescribeKey",
 "kms:GetKeyPolicy",
 "kms:GetKeyRotationStatus",
 "kms:GetPublicKey",
 "kms:ListKeys",
 "kms:ListAliases",
 "kms:ListKeyPolicies",
 "iam:ListUsers",
 "iam:ListRoles"
],
 "Resource": "*"
 }
}

Allow a User to Encrypt and Decrypt with Any CMK in a Specific
AWS Account
The following policy allows a user to successfully request that AWS KMS encrypt and decrypt data with
any CMK in AWS account 111122223333.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt"
],
 "Resource": [
 "arn:aws:kms:*:111122223333:key/*"
]
 }
}

Allow a User to Encrypt and Decrypt with Any CMK in a Specific
AWS Account and Region
The following policy allows a user to successfully request that AWS KMS encrypt and decrypt data with
any CMK in AWS account 111122223333 in the US West (Oregon) region.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt"
],
 "Resource": [
 "arn:aws:kms:us-west-2:111122223333:key/*"
]
 }
}

70

AWS Key Management Service Developer Guide
Allowing Cross-Account Access to a CMK

Allow a User to Encrypt and Decrypt with Specific CMKs
The following policy allows a user to successfully request that AWS KMS encrypt and decrypt data with
the two CMKs specified in the policy's Resource element.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt"
],
 "Resource": [
 "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321"
]
 }
}

Prevent a User from Disabling or Deleting Any CMKs
The following policy prevents a user from disabling or deleting any CMKs, even when another IAM policy
or a key policy allows these permissions. A policy that explicitly denies permissions overrides all other
policies, even those that explicitly allow the same permissions. For more information, see Determining
Whether a Request is Allowed or Denied in the IAM User Guide.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Deny",
 "Action": [
 "kms:DisableKey",
 "kms:ScheduleKeyDeletion"
],
 "Resource": "*"
 }
}

Allowing Users in Other Accounts to Use a CMK
You can allow IAM users or roles in one AWS account to use a customer master key (CMK) in a different
AWS account. You can add these permissions when you create the CMK or change the permissions for an
existing CMK.

To give permission to use a CMK to users and roles in another account, you must use two different types
of policies:

• The key policy for the CMK must give the external account (or users and roles in the external account)
permission to use the CMK. The key policy is in the account that owns the CMK.

• You must attach IAM policies to IAM users and roles in the external account. These IAM policies
delegate the permissions that are specified in the key policy.

In this scenario, the key policy determines who can have access to the CMK. The IAM policy determines
who does have access to the CMK. Neither the key policy nor the IAM policy alone is sufficient—you must
change both.

71

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html#policy-eval-denyallow
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html#policy-eval-denyallow

AWS Key Management Service Developer Guide
Step 1: Add a Key Policy Statement in the Local Account

To edit the key policy, you can use the Policy View (p. 65) in the AWS Management Console or use the
CreateKey or PutKeyPolicy operations. For help setting the key policy when creating a CMK, see Creating
CMKs that Other Accounts Can Use (p. 74).

For help with editing IAM policies, see Using IAM Policies with AWS KMS (p. 67).

For an example that shows how the key policy and IAM policies work together to allow use of a CMK in
a different account, see Example 2: User Assumes Role with Permission to Use a CMK in a Different AWS
Account (p. 125).

Topics
• Step 1: Add a Key Policy Statement in the Local Account (p. 72)
• Step 2: Add IAM Policies in the External Account (p. 73)
• Creating CMKs that Other Accounts Can Use (p. 74)
• Using External CMKs with AWS Services (p. 76)

Step 1: Add a Key Policy Statement in the Local
Account
The key policy for a CMK is the primary determinant of who can access the CMK and which operations
they can perform. The key policy is always in the account that owns the CMK. Unlike IAM policies, key
policies do not specify a resource. The resource is the CMK that is associated with the key policy.

To give an external account permission to use the CMK, add a statement to the key policy that specifies
the external account. In the Principal element of the key policy, enter the Amazon Resource Name
(ARN) of the external account.

When you specify an external account in a key policy, IAM administrators in the external account can use
IAM policies to delegate those permissions to any users and roles in the external account. They can also
decide which of the actions specified in the key policy the users and roles can perform.

For example, assume that you want to allow account 444455556666 to use a symmetric CMK in
account 111122223333. To do that, add a policy statement like the one in the following example to
the key policy for the CMK in account 111122223333. This policy statement gives the external account,
444455556666, permission to use the CMK in cryptographic operations for symmetric CMKs.

{
 "Sid": "Allow an external account to use this CMK",
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "arn:aws:iam::444455556666:root"
]
 },
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:DescribeKey"
],
 "Resource": "*"
}

Instead of giving permission to the external account, you can specify particular external users and roles
in the key policy . However, those users and roles cannot use the CMK until IAM administrators in the

72

https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_PutKeyPolicy.html

AWS Key Management Service Developer Guide
Step 2: Add IAM Policies in the External Account

external account attach the proper IAM policies to their identities. The IAM policies can give permission
to all or a subset of the external users and roles that are specified in the key policy. And they can allow
all or a subset of the actions specified in the key policy.

Specifying identities in a key policy restricts the permissions that IAM administrators in the external
account can provide. However, it makes policy management with two accounts more complex. For
example, assume that you need to add a user or role. You must add that identity to the key policy in the
account that owns the CMK and create IAM policies in the identity's account.

To specify particular external users or roles in a key policy, in the Principal element, enter the Amazon
Resource Name (ARN) of a user or role in the external account.

For example, the following example key policy statement allows ExampleRole and ExampleUser in
account 444455556666 to use a CMK in account 111122223333. This key policy statement gives the
external account, 444455556666, permission to use the CMK in cryptographic operations for symmetric
CMKs.

{
 "Sid": "Allow an external account to use this CMK",
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "arn:aws:iam::444455556666:role/ExampleRole"
 "arn:aws:iam::444455556666:user/ExampleUser"
]
 },
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:DescribeKey"
],
 "Resource": "*"
}

Note
Do not set the Principal to an asterisk (*) in any key policy statement that allows permissions.
An asterisk gives every identity in every AWS account permission to use the CMK, unless another
policy statement explicitly denies it. Users in other AWS accounts just need corresponding IAM
permissions in their own accounts to use the CMK.

You also need to decide which permissions you want to give to the external account. For a list of
permissions on CMKs, see AWS KMS API Permissions: Actions and Resources Reference (p. 76).

You can give the external account permission to use the CMK in cryptographic operations and use the
CMK with AWS services that are integrated with AWS KMS. To do that, use the Key Users section of the
AWS Management Console. For details, see Creating CMKs that Other Accounts Can Use (p. 74).

To specify other permissions in key policies, edit the key policy document. For example, you might want
to give users permission to decrypt but not encrypt, or permission to view the CMK but not use it. To edit
the key policy document, you can use the Policy View (p. 65) in the AWS Management Console or the
CreateKey or PutKeyPolicy operations.

Step 2: Add IAM Policies in the External Account
The key policy in the account that owns the CMK sets the valid range for permissions. But, users and
roles in the external account cannot use the CMK until you attach IAM policies that delegate those
permissions, or use grants to manage access to the CMK. The IAM policies are set in the external account.

73

https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_PutKeyPolicy.html

AWS Key Management Service Developer Guide
Creating CMKs that Other Accounts Can Use

If the key policy gives permission to the external account, you can attach IAM policies to any user or
role in the account. But if the key policy gives permission to specified users or roles, the IAM policy can
only give those permissions to all or a subset of the specified users and roles. If an IAM policy gives CMK
access to other external users or roles, it has no effect.

The key policy also limits the actions in the IAM policy. The IAM policy can delegate all or a subset of the
actions specified in the key policy. If the IAM policy lists actions that are not specified in the key policy,
those permissions are not effective.

The following example IAM policy allows the principal to use the CMK in account 111122223333 for
cryptographic operations. To give this permission to users and roles in account 444455556666, attach
the policy to the users or roles in account 444455556666.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Allow Use Of CMK In Account 111122223333",
 "Effect": "Allow",
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:DescribeKey"
],
 "Resource": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }
]
}

Note the following details about this policy:

• Unlike key policies, IAM policy statements do not contain the Principal element. In IAM policies, the
principal is the identity to which the policy is attached.

• The Resource element in the IAM policy identifies the CMK that the principal can use. To specify
a CMK, add its Amazon Resource Name (ARN) (p. 48) to the Resource element. You can specify
more than one CMK in the policy statement. But if you don't specify particular CMKs in the Resource
element, you might inadvertently give access to more CMKs than you intend.

• To allow the external user to use the CMK with AWS services that integrate with AWS KMS, you might
need to add permissions to the key policy or the IAM policy. For details, see Using External CMKs with
AWS Services (p. 76).

For more information about working with IAM policies, see Using IAM Policies (p. 67).

Creating CMKs that Other Accounts Can Use
When you use the CreateKey operation create a CMK, you can use its Policy parameter to specify a key
policy (p. 72) that gives an external account, or external users and roles, permission to use the CMK.
You must also add IAM policies (p. 73) in the external account that delegate these permissions to the
account's users and roles, even when users and roles are specified in the key policy. You can change the
key policy at any time by using the PutKeyPolicy operation.

When you create a CMK in the AWS Management Console, you also create its key policy. When you select
identities in the Key Administrators and Key Users sections, AWS KMS adds policy statements for those
identities to the CMK's key policy.

74

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-using.html#attach-managed-policy-console
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-using.html#attach-managed-policy-console
https://aws.amazon.com/kms/features/#AWS_Service_Integration
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_PutKeyPolicy.html

AWS Key Management Service Developer Guide
Creating CMKs that Other Accounts Can Use

The Key Users section also lets you add external accounts as key users.

When you enter the account ID of an external account, AWS KMS adds two statements to the key policy.
This action only affects the key policy. Users and roles in the external account cannot use the CMK until
you attach IAM policies (p. 73) to give them some or all of these permissions.

The first policy statement gives the external account permission to use the CMK in cryptographic
operations.

{
 "Sid": "Allow use of the key",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::444455556666:root"
 },
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:DescribeKey"
],
 "Resource": "*"
}

The second policy statement allows the external account to create, view, and revoke grants on the
CMK, but only when the request comes from an AWS service that is integrated with AWS KMS. These
permissions allow other AWS services, such as that encrypt user data to use the CMK.

These permissions are designed for CMKs that encrypt user data in AWS services, such as Amazon
WorkMail (p. 276). These services typically use grants to get the permissions they need to use the CMK
on the user's behalf. For details, see Using External CMKs with AWS Services (p. 76).

{
 "Sid": "Allow attachment of persistent resources",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::444455556666:root"
 },
 "Action": [
 "kms:CreateGrant",
 "kms:ListGrants",
 "kms:RevokeGrant"
],
 "Resource": "*",
 "Condition": {
 "Bool": {
 "kms:GrantIsForAWSResource": "true"
 }
 }
}

75

https://aws.amazon.com/kms/features/#AWS_Service_Integration

AWS Key Management Service Developer Guide
Using External CMKs with AWS Services

If these permissions don't meet your needs, you can edit them in the console policy view (p. 65) or
by using the PutKeyPolicy operation. You can specify particular external users and role instead of giving
permission to the external account. You can change the actions that the policy specifies. And you can use
global and AWS KMS policy conditions to refine the permissions.

Using External CMKs with AWS Services
You can give a user in a different account permission to use your CMK with a service that is integrated
with AWS KMS. For example, a user in an external account can use your CMK to encrypt the objects in an
Amazon S3 bucket (p. 265) or to encrypt the secrets they store in AWS Secrets Manager (p. 255).

The key policy must give the external user or the external user's account permission to use the CMK. In
addition, you need to attach IAM policies to the identity that gives the user permission to use the AWS
service.

Also, the service might require that users have additional permissions in the key policy. For example, it
might require permission to create, list, and revoke grants on the CMK. Or it might require particular IAM
policies. For details, see the documentation for the service.

Finally, the lists of CMKs displayed in the AWS Management Console for an integrated service do not
include CMKs in external accounts. This is true even when the user or role has permission to use them.
To use an external account's CMK, the user must enter the ID or ARN of the CMK. For details, see the
service's console documentation.

AWS KMS API Permissions: Actions and Resources
Reference

The Actions and Resources Table is designed to help you define access control (p. 47) in key
policies (p. 50) and IAM policies (p. 67). The columns provide the following information:

• API Operations and Actions (Permissions) lists each AWS KMS API operation and the corresponding
action (permission) that allows the operation. You specify actions in a policy's Action element.

• Policy Type indicates whether the permission can be used in a key policy or IAM policy. When the type
is key policy, you can specify the permission explicitly in the key policy. Or, if the key policy contains the
policy statement that enables IAM policies (p. 52), you can specify the permission in an IAM policy.
When the type is IAM policy, you can specify the permission only in an IAM policy.

• Resources lists the resources for which you can allow the operation. To specify a resource in an IAM
policy, type the Amazon Resource Name (ARN) in the Resource element. Because a key policy applies
only to the CMK that it is attached to, the value of its Resource element is always "*".

Each resource type is associated with an ARN that you use to represent the resource.
CMK ARNs

When the resource is a CMK, you represent it by using a CMK ARN.

arn:AWS_partition_name:AWS_Region:AWS_account_ID:key/CMK_key_ID

For example:

arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
Alias ARNs

When the resource is an alias, you represent it by using an alias ARN.

arn:AWS_partition_name:AWS_region:AWS_account_ID:alias/alias_name

76

AWS Key Management Service Developer Guide
AWS KMS API Permissions Reference

For example:

arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias
• AWS KMS Condition Keys lists the AWS KMS condition keys that you can use to control access to the

operation. You specify conditions in a policy's Condition element. For more information, see AWS
KMS Condition Keys (p. 88). This column also includes AWS global condition keys that are supported
by AWS KMS, but not by all AWS services.

AWS KMS API Operations and Permissions

API Operations and Actions
(Permissions)

Policy Type Resources (for
IAM Policies)

AWS KMS Condition Keys

CancelKeyDeletion

kms:CancelKeyDeletion

Key policy CMK kms:CallerAccount

kms:CustomerMasterKeySpec

kms:CustomerMasterKeyUsage

kms:KeyOrigin

kms:ViaService

ConnectCustomKeyStore

kms:ConnectCustomKeyStore

IAM policy * kms:CallerAccount

IAM policy (for
the alias)

Alias None (when controlling access
to the alias)

CreateAlias

kms:CreateAlias

To use this operation, the caller
needs kms:CreateAlias
permission on two resources:

• The alias (in an IAM policy)
• The CMK (in a key policy)

Key policy (for
the CMK)

CMK kms:CallerAccount

kms:CustomerMasterKeySpec

kms:CustomerMasterKeyUsage

kms:KeyOrigin
kms:ViaService

CreateCustomKeyStore

kms:CreateCustomKeyStore

IAM policy * kms:CallerAccount

CreateGrant

kms:CreateGrant

Key policy CMK kms:CallerAccount

kms:CustomerMasterKeySpec

kms:CustomerMasterKeyUsage

kms:KeyOrigin

kms:EncryptionContext:

kms:EncryptionContextKeys

kms:GrantConstraintType

kms:GranteePrincipal

kms:GrantIsForAWSResource

77

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_CancelKeyDeletion.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ConnectCustomKeyStore.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateAlias.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateCustomKeyStore.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateGrant.html

AWS Key Management Service Developer Guide
AWS KMS API Permissions Reference

API Operations and Actions
(Permissions)

Policy Type Resources (for
IAM Policies)

AWS KMS Condition Keys

kms:GrantOperations

kms:RetiringPrincipal

kms:ViaService

CreateKey

kms:CreateKey

IAM policy * kms:BypassPolicyLockoutSafetyCheck

kms:CustomerMasterKeySpec

kms:CustomerMasterKeyUsage

kms:KeyOrigin

Decrypt

kms:Decrypt

Key policy CMK kms:CallerAccount

kms:CustomerMasterKeySpec

kms:CustomerMasterKeyUsage

kms:KeyOrigin

kms:EncryptionAlgorithm

kms:EncryptionContext:

kms:EncryptionContextKeys

kms:ViaService

IAM policy (for
the alias)

Alias None (when controlling access
to the alias)

DeleteAlias

kms:DeleteAlias

To use this operation, the caller
needs kms:DeleteAlias
permission on two resources:

• The alias (in an IAM policy)
• The CMK (in a key policy)

Key policy (for
the CMK)

CMK kms:CallerAccount

kms:CustomerMasterKeySpec

kms:CustomerMasterKeyUsage

kms:KeyOrigin

kms:ViaService

DeleteCustomKeyStore

kms:DeleteCustomKeyStore

IAM policy * kms:CallerAccount

DeleteImportedKeyMaterial

kms:DeleteImportedKeyMaterial

Key policy CMK kms:CallerAccount

kms:CustomerMasterKeySpec

kms:CustomerMasterKeyUsage

kms:KeyOrigin

kms:ViaService

78

https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeleteAlias.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeleteCustomKeyStore.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeleteImportedKeyMaterial.html

AWS Key Management Service Developer Guide
AWS KMS API Permissions Reference

API Operations and Actions
(Permissions)

Policy Type Resources (for
IAM Policies)

AWS KMS Condition Keys

DescribeCustomKeyStores

kms:DescribeCustomKeyStores

IAM policy * kms:CallerAccount

DescribeKey

kms:DescribeKey

Key policy CMK kms:CallerAccount

kms:CustomerMasterKeySpec

kms:CustomerMasterKeyUsage

kms:KeyOrigin

kms:ViaService

DisableKey

kms:DisableKey

Key policy CMK kms:CallerAccount

kms:CustomerMasterKeySpec

kms:CustomerMasterKeyUsage

kms:KeyOrigin

kms:ViaService

DisableKeyRotation

kms:DisableKeyRotation

Key policy CMK kms:CallerAccount

kms:CustomerMasterKeySpec

kms:CustomerMasterKeyUsage

kms:KeyOrigin

kms:ViaService

DisconnectCustomKeyStore

kms:DisconnectCustomKeyStore

IAM policy * kms:CallerAccount

EnableKey

kms:EnableKey

Key policy CMK kms:CallerAccount

kms:CustomerMasterKeySpec

kms:CustomerMasterKeyUsage

kms:KeyOrigin

kms:ViaService

EnableKeyRotation

kms:EnableKeyRotation

Key policy CMK
(symmetric
only)

kms:CallerAccount

kms:CustomerMasterKeySpec

kms:CustomerMasterKeyUsage

kms:KeyOrigin

kms:ViaService

79

https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeCustomKeyStores.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DisableKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DisableKeyRotation.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DisconnectCustomKeyStore.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_EnableKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_EnableKeyRotation.html

AWS Key Management Service Developer Guide
AWS KMS API Permissions Reference

API Operations and Actions
(Permissions)

Policy Type Resources (for
IAM Policies)

AWS KMS Condition Keys

Encrypt

kms:Encrypt

Key policy CMK kms:CallerAccount

kms:CustomerMasterKeySpec

kms:CustomerMasterKeyUsage

kms:KeyOrigin

kms:EncryptionAlgorithm

kms:EncryptionContext:

kms:EncryptionContextKeys

kms:ViaService

GenerateDataKey

kms:GenerateDataKey

Key policy CMK
(symmetric
only)

kms:CallerAccount

kms:CustomerMasterKeySpec

kms:CustomerMasterKeyUsage

kms:KeyOrigin
kms:EncryptionAlgorithm

kms:EncryptionContext:

kms:EncryptionContextKeys

kms:ViaService

GenerateDataKeyPair

kms:GenerateDataKeyPair

Key policy CMK
(symmetric
only)

kms:CallerAccount

kms:CustomerMasterKeySpec

kms:CustomerMasterKeyUsage

kms:KeyOrigin
kms:DataKeyPairSpec

kms:EncryptionAlgorithm

kms:EncryptionContext:

kms:EncryptionContextKeys

kms:ViaService

80

https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyPair.html

AWS Key Management Service Developer Guide
AWS KMS API Permissions Reference

API Operations and Actions
(Permissions)

Policy Type Resources (for
IAM Policies)

AWS KMS Condition Keys

GenerateDataKeyPairWithoutPlaintext

kms:GenerateDataKeyPairWithoutPlaintext

Key policy CMK
(symmetric
only)

kms:CallerAccount

kms:CustomerMasterKeySpec

kms:CustomerMasterKeyUsage

kms:KeyOrigin
kms:DataKeyPairSpec

kms:EncryptionAlgorithm

kms:EncryptionContext:

kms:EncryptionContextKeys

kms:ViaService

GenerateDataKeyWithoutPlaintext

kms:GenerateDataKeyWithoutPlaintext

Key policy CMK
(symmetric
only)

kms:CallerAccount

kms:CustomerMasterKeySpec

kms:CustomerMasterKeyUsage

kms:KeyOrigin
kms:EncryptionAlgorithm

kms:EncryptionContext:

kms:EncryptionContextKeys

kms:ViaService

GenerateRandom

kms:GenerateRandom

IAM policy * None

GetKeyPolicy

kms:GetKeyPolicy

Key policy CMK kms:CallerAccount

kms:CustomerMasterKeySpec

kms:CustomerMasterKeyUsage

kms:KeyOrigin

kms:ViaService

GetKeyRotationStatus

kms:GetKeyRotationStatus

Key policy CMK
(symmetric
only)

kms:CallerAccount

kms:CustomerMasterKeySpec

kms:CustomerMasterKeyUsage

kms:KeyOrigin

kms:ViaService

81

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyPairWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateRandom.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetKeyPolicy.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetKeyRotationStatus.html

AWS Key Management Service Developer Guide
AWS KMS API Permissions Reference

API Operations and Actions
(Permissions)

Policy Type Resources (for
IAM Policies)

AWS KMS Condition Keys

GetParametersForImport

kms:GetParametersForImport

Key policy CMK
(symmetric
only)

kms:CallerAccount

kms:CustomerMasterKeySpec

kms:CustomerMasterKeyUsage

kms:KeyOrigin

kms:ViaService

kms:WrappingAlgorithm

kms:WrappingKeySpec

GetPublicKey

kms:GetPublicKey

Key policy CMK
(asymmetric
only)

kms:CallerAccount

kms:CustomerMasterKeySpec

kms:CustomerMasterKeyUsage

kms:KeyOrigin

kms:ViaService

ImportKeyMaterial

kms:ImportKeyMaterial

Key policy CMK
(symmetric
only)

kms:CallerAccount

kms:CustomerMasterKeySpec

kms:CustomerMasterKeyUsage

kms:KeyOrigin

kms:ExpirationModel

kms:ValidTo

kms:ViaService

ListAliases

kms:ListAliases

IAM policy * None

ListGrants

kms:ListGrants

Key policy CMK kms:CallerAccount
kms:GrantIsForAWSResource

kms:CustomerMasterKeySpec

kms:CustomerMasterKeyUsage

kms:KeyOrigin
kms:ViaService

82

https://docs.aws.amazon.com/kms/latest/APIReference/API_GetParametersForImport.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ImportKeyMaterial.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ListAliases.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ListGrants.html

AWS Key Management Service Developer Guide
AWS KMS API Permissions Reference

API Operations and Actions
(Permissions)

Policy Type Resources (for
IAM Policies)

AWS KMS Condition Keys

ListKeyPolicies

kms:ListKeyPolicies

Key policy CMK kms:CallerAccount

kms:CustomerMasterKeySpec

kms:CustomerMasterKeyUsage

kms:KeyOrigin

kms:ViaService

ListKeys

kms:ListKeys

IAM policy * None

ListResourceTags

kms:ListResourceTags

Key policy CMK kms:CallerAccount

kms:CustomerMasterKeySpec

kms:CustomerMasterKeyUsage

kms:KeyOrigin

kms:ViaService

ListRetirableGrants

kms:ListRetirableGrants

IAM policy * None

PutKeyPolicy

kms:PutKeyPolicy

Key policy CMK kms:BypassPolicyLockoutSafetyCheck

kms:CallerAccount

kms:CustomerMasterKeySpec

kms:CustomerMasterKeyUsage

kms:KeyOrigin

kms:ViaService

ReEncrypt

kms:ReEncryptFrom

kms:ReEncryptTo

To use this operation, the caller
needs permission on two CMKs:

• kms:ReEncryptFrom on the
CMK used to decrypt

• kms:ReEncryptTo on the
CMK used to encrypt

Key policy CMK kms:CallerAccount

kms:CustomerMasterKeySpec

kms:CustomerMasterKeyUsage

kms:KeyOrigin
kms:EncryptionAlgorithm

kms:EncryptionContext:

kms:EncryptionContextKeys

kms:ReEncryptOnSameKey

kms:ViaService

83

https://docs.aws.amazon.com/kms/latest/APIReference/API_ListKeyPolicies.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ListKeys.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ListResourceTags.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ListRetirableGrants.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_PutKeyPolicy.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html

AWS Key Management Service Developer Guide
AWS KMS API Permissions Reference

API Operations and Actions
(Permissions)

Policy Type Resources (for
IAM Policies)

AWS KMS Condition Keys

RetireGrant

Permission to retire a grant
is specified in the grant. You
cannot control access to this
operation in a policy. For more
information, see RetireGrant
in the AWS Key Management
Service API Reference.

Not applicable Not applicable Not applicable

RevokeGrant

kms:RevokeGrant

Key policy CMK kms:CallerAccount

kms:CustomerMasterKeySpec

kms:CustomerMasterKeyUsage

kms:KeyOrigin

kms:GrantIsForAWSResource

kms:ViaService

ScheduleKeyDeletion

kms:ScheduleKeyDeletion

Key policy CMK kms:CallerAccount

kms:CustomerMasterKeySpec

kms:CustomerMasterKeyUsage

kms:KeyOrigin
kms:ViaService

Sign

kms:Sign

Key policy CMK
(asymmetric
only)

kms:CallerAccount

kms:CustomerMasterKeySpec

kms:CustomerMasterKeyUsage

kms:KeyOrigin
kms:MessageType

kms:SigningAlgorithm

kms:ViaService

84

https://docs.aws.amazon.com/kms/latest/APIReference/API_RetireGrant.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_RetireGrant.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_RevokeGrant.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ScheduleKeyDeletion.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Sign.html

AWS Key Management Service Developer Guide
AWS KMS API Permissions Reference

API Operations and Actions
(Permissions)

Policy Type Resources (for
IAM Policies)

AWS KMS Condition Keys

TagResource

kms:TagResource

Key policy CMK kms:CallerAccount

kms:CustomerMasterKeySpec

kms:CustomerMasterKeyUsage

kms:KeyOrigin

kms:ViaService

aws:RequestTag (AWS global
condition key)

aws:TagKeys (AWS global
condition key)

UntagResource

kms:UntagResource

Key policy CMK kms:CallerAccount

kms:CustomerMasterKeySpec

kms:CustomerMasterKeyUsage

kms:KeyOrigin

kms:ViaService

aws:RequestTag (AWS global
condition key)

aws:TagKeys (AWS global
condition key)

IAM policy (for
the alias)

Alias None (when controlling access
to the alias)

UpdateAlias

kms:UpdateAlias

To use this operation, the caller
needs kms:UpdateAlias
permission on three resources:

• The alias
• The CMK that alias currently

points to
• The CMK that is specified in

the UpdateAlias request

Key policy (for
the CMKs)

CMK kms:CallerAccount

kms:CustomerMasterKeySpec

kms:CustomerMasterKeyUsage

kms:KeyOrigin

kms:ViaService

UpdateCustomKeyStore

kms:UpdateCustomKeyStore

IAM policy * kms:CallerAccount

85

https://docs.aws.amazon.com/kms/latest/APIReference/API_TagResource.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_UntagResource.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_UpdateAlias.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_UpdateCustomKeyStore.html

AWS Key Management Service Developer Guide
Using Policy Conditions

API Operations and Actions
(Permissions)

Policy Type Resources (for
IAM Policies)

AWS KMS Condition Keys

UpdateKeyDescription

kms:UpdateKeyDescription

Key policy CMK kms:CallerAccount

kms:CustomerMasterKeySpec

kms:CustomerMasterKeyUsage

kms:KeyOrigin

kms:ViaService

Verify

kms:Verify

Key policy CMK
(asymmetric
only)

kms:CallerAccount

kms:CustomerMasterKeySpec

kms:CustomerMasterKeyUsage

kms:KeyOrigin

kms:MessageType

kms:SigningAlgorithm

kms:ViaService

Using Policy Conditions with AWS KMS
You can specify conditions in the key policies and AWS Identity and Access Management policies (IAM
policies (p. 67)) that control access to AWS KMS resources. The policy statement is effective only
when the conditions are true. For example, you might want a policy statement to take effect only after a
specific date. Or, you might want a policy statement to control access only when a specific value appears
in an API request.

To specify conditions, you use predefined condition keys in the Condition element of a policy statement
with IAM condition policy operators. Some condition keys apply generally to AWS; others are specific to
AWS KMS.

Topics
• AWS Global Condition Keys (p. 86)
• AWS KMS Condition Keys (p. 88)

AWS Global Condition Keys
AWS provides global condition keys, a set of predefined condition keys for all AWS services that use IAM
for access control. For example, you can use the aws:PrincipalArn condition key to allow access only
when the principal in the request is represented by the Amazon Resource Name (ARN) that you specify.

In addition to global conditions keys that are supported by every AWS service, IAM defines conditions
keys that AWS services can choose to support. AWS KMS supports the following optional global
condition keys.

• aws:PrincipalTag
• aws:PrincipalType

86

https://docs.aws.amazon.com/kms/latest/APIReference/API_UpdateKeyDescription.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Verify.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#AvailableKeys

AWS Key Management Service Developer Guide
AWS Global Condition Keys

• aws:RequestTag
• aws:SourceIp (see the section called “Using the IP Address Condition” (p. 87))
• aws:SourceVpc (see the section called “Using VPC and VPC Endpoint Conditions” (p. 87))
• aws:SourceVpce (see the section called “Using VPC and VPC Endpoint Conditions” (p. 87))
• aws:TagKeys
• aws:TokenIssueTime
• aws:userid
• aws:username

For a list and descriptions of all optional global condition keys, see Keys Available for Some Services in
the AWS Identity and Access Management User Guide. For examples of using these condition keys in IAM
policies, see Controlling Access to Requests and Controlling Tag Keys in the IAM User Guide.

Topics
• Using the IP Address Condition in Policies with AWS KMS Permissions (p. 87)
• Using VPC Endpoint Conditions in Policies with AWS KMS Permissions (p. 87)

Using the IP Address Condition in Policies with AWS KMS
Permissions
You can use AWS KMS to protect your data in an integrated AWS service (p. 228). But use caution when
specifying the IP address condition operators or the aws:SourceIp condition key in the same policy
statement that allows or denies access to AWS KMS. For example, the policy in AWS: Denies Access to
AWS Based on the Source IP restricts AWS actions to requests from the specified IP range.

Consider this scenario:

1. You attach a policy like the one shown at AWS: Denies Access to AWS Based on the Source IP to an IAM
user. You set the value of the aws:SourceIp condition key to the range of IP addresses for the user's
company. This IAM user has other policies attached that allow it to use Amazon EBS, Amazon EC2, and
AWS KMS.

2. The user attempts to attach an encrypted EBS volume to an EC2 instance. This action fails with an
authorization error even though the user has permission to use all the relevant services.

Step 2 fails because the request to AWS KMS to decrypt the volume's encrypted data key comes from
an IP address that is associated with the Amazon EC2 infrastructure. To succeed, the request must come
from the IP address of the originating user. Because the policy in step 1 explicitly denies all requests from
IP addresses other than those specified, Amazon EC2 is denied permission to decrypt the EBS volume's
encrypted data key.

Also, the aws:sourceIP condition key is not effective when the request comes from an Amazon VPC
endpoint. To restrict requests to a VPC endpoint, including an AWS KMS VPC endpoint (p. 211), use
the aws:sourceVpce or aws:sourceVpc condition keys. For more information, see VPC Endpoints -
Controlling the Use of Endpoints in the Amazon VPC User Guide.

Using VPC Endpoint Conditions in Policies with AWS KMS
Permissions
AWS KMS supports Amazon Virtual Private Cloud (Amazon VPC) endpoints (p. 211) that are powered
by AWS PrivateLink. You can use the following global condition keys in IAM policies to allow or deny
access to a particular VPC or VPC endpoint. You can also use these global condition keys in AWS KMS key
policies (p. 215) to restrict access to AWS KMS CMKs to requests from the VPC or VPC endpoint.

87

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-service-available
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html#access_tags_control-requests
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html#access_tags_control-tag-keys
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html#Conditions_IPAddress
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_examples_aws_deny-ip.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_examples_aws_deny-ip.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_examples_aws_deny-ip.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints.html#vpc-endpoints-iam-access
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints.html#vpc-endpoints-iam-access
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Introduction.html#what-is-privatelink
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#AvailableKeys

AWS Key Management Service Developer Guide
AWS KMS Condition Keys

• aws:SourceVpc limits access to requests from the specified VPC.
• aws:SourceVpce limits access to requests from the specified VPC endpoint.

If you use these condition keys in a key policy statement that allows or denies access to AWS KMS CMKs,
you might inadvertently deny access to services that use AWS KMS on your behalf.

Take care to avoid a situation like the IP address condition keys (p. 87) example. If you restrict
requests for a CMK to a VPC or VPC endpoint, calls to AWS KMS from an integrated service, such as
Amazon S3 or Amazon EBS, might fail. This can happen even if the source request ultimately originates
in the VPC or from the VPC endpoint.

AWS KMS Condition Keys
AWS KMS provides an additional set of predefined condition keys that you can use in key policies
and IAM policies. These condition keys are specific to AWS KMS. For example, you can use the
kms:EncryptionContext condition key to require a particular encryption context (p. 12) when
controlling access to an AWS KMS symmetric customer master key (CMK).

Conditions for an API operation request

Many of the AWS KMS condition keys control access to a CMK based on the value of a parameter in
the request for an API operation. For example, you can use the kms:CustomerMasterKeySpec (p. 91)
condition key in an IAM policy to allow use of the CreateKey operation only when the value of the
CustomerMasterKeySpec parameter in the CreateKey request is RSA_4096.

This type of condition works even when the parameter doesn't appear in the request, such as when you
use the parameter's default value. For example you can use the kms:CustomerMasterKeySpec (p. 91)
condition key to allow users to use the CreateKey operation only when the value of the
CustomerMasterKeySpec parameter is SYMMETRIC_DEFAULT, which is the default value.
This condition allows requests that have the CustomerMasterKeySpec parameter with the
SYMMETRIC_DEFAULT value and requests that have no CustomerMasterKeySpec parameter.

Conditions for CMKs used in API operations

Some of the AWS KMS condition keys control access to operations based on a property of the CMK
that is used in the operation. For example, you can use the kms:KeyOrigin (p. 106) condition to allow
principals to call GenerateDataKey on a CMK only when the Origin of the CMK is AWS_KMS. To find out
if a condition key can be used in this way, see the description of the condition key.

The operation must be a CMK resource operation, that is, an operation that is authorized for a particular
CMK. To identify the CMK resource operations, in the Actions and Resources Table (p. 77), look for
a value of CMK in the Resources column for the operation. If you use this type of condition key with
an operation that is not authorized for a particular CMK resource, like ListKeys, the permission is not
effective because the condition can never be satisfied. There is no CMK resource involved in authorizing
the ListKeys operation and no CustomerMasterKeySpec property.

The following topics describe each AWS KMS condition key and include example policy statements that
demonstrate policy syntax.

Topics
• kms:BypassPolicyLockoutSafetyCheck (p. 89)
• kms:CallerAccount (p. 90)
• kms:CustomerMasterKeySpec (p. 91)
• kms:CustomerMasterKeyUsage (p. 92)
• kms:DataKeyPairSpec (p. 93)
• kms:EncryptionAlgorithm (p. 94)

88

https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ListKeys.html

AWS Key Management Service Developer Guide
AWS KMS Condition Keys

• kms:EncryptionContext: (p. 96)
• kms:EncryptionContextKeys (p. 100)
• kms:ExpirationModel (p. 102)
• kms:GrantConstraintType (p. 103)
• kms:GrantIsForAWSResource (p. 104)
• kms:GrantOperations (p. 105)
• kms:GranteePrincipal (p. 105)
• kms:KeyOrigin (p. 106)
• kms:MessageType (p. 107)
• kms:ReEncryptOnSameKey (p. 108)
• kms:RetiringPrincipal (p. 108)
• kms:SigningAlgorithm (p. 109)
• kms:ValidTo (p. 110)
• kms:ViaService (p. 111)
• kms:WrappingAlgorithm (p. 113)
• kms:WrappingKeySpec (p. 114)

kms:BypassPolicyLockoutSafetyCheck

AWS KMS Condition
Keys

Condition Type API Operations Policy Type

kms:BypassPolicyLockoutSafetyCheckBoolean CreateKey

PutKeyPolicy

IAM policies only

Key policies and IAM
policies

The kms:BypassPolicyLockoutSafetyCheck condition key controls access to the CreateKey and
PutKeyPolicy operations based on the value of the BypassPolicyLockoutSafetyCheck parameter in
the request.

The following example IAM policy statement prevents users from bypassing the policy
lockout safety check by denying them permission to create CMKs when the value of the
BypassPolicyLockoutSafetyCheck parameter in the CreateKey request is true.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Deny",
 "Action": "kms:CreateKey",
 "Resource": "*",
 "Condition": {
 "Bool": {
 "kms:BypassPolicyLockoutSafetyCheck": true
 }
 }
 }
}

You can also use the kms:BypassPolicyLockoutSafetyCheck condition key in an IAM policy or key
policy to control access to the PutKeyPolicy operation. The following example policy statement from

89

https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_PutKeyPolicy.html

AWS Key Management Service Developer Guide
AWS KMS Condition Keys

a key policy prevents users from bypassing the policy lockout safety check when changing the policy of a
CMK.

Instead of using an explicit Deny, this policy statement uses Allow with the Null condition operator
to allow access only when the request does not include the BypassPolicyLockoutSafetyCheck
parameter. When the parameter is not used, the default value is false. This slightly weaker policy
statement can be overriden in the rare case that a bypass is necessary.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "kms:PutKeyPolicy",
 "Resource": "*",
 "Condition": {
 "Null": {
 "kms:BypassPolicyLockoutSafetyCheck": true
 }
 }
 }
}

See Also

• kms:CustomerMasterKeySpec (p. 91)
• kms:KeyOrigin (p. 106)
• kms:CustomerMasterKeyUsage (p. 92)

kms:CallerAccount

AWS KMS Condition
Keys

Condition Type API Operations Policy Type

kms:CallerAccount String All AWS KMS operations
except for CreateKey,
GenerateRandom,
ListAliases,
ListKeys,
ListRetirableGrants,
and RetireGrant.

Key policies only

You can use this condition key to allow or deny access to all identities (IAM users and roles) in an
AWS account. In key policies, you use the Principal element to specify the identities to which the
policy statement applies. The syntax for the Principal element does not provide a way to specify
all identities in an AWS account. But you can achieve this effect by combining this condition key with a
Principal element that specifies all AWS identities.

For example, the following policy statement demonstrates how to use the kms:CallerAccount
condition key. This policy statement is in the key policy for the AWS managed CMK for Amazon EBS.
It combines a Principal element that specifies all AWS identities with the kms:CallerAccount
condition key to effectively allow access to all identities in AWS account 111122223333. It contains an
additional AWS KMS condition key (kms:ViaService) to further limit the permissions by only allowing
requests that come through Amazon EBS. For more information, see kms:ViaService (p. 111).

{

90

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html#Conditions_Null

AWS Key Management Service Developer Guide
AWS KMS Condition Keys

 "Sid": "Allow access through EBS for all principals in the account that are authorized to
 use EBS",
 "Effect": "Allow",
 "Principal": {"AWS": "*"},
 "Condition": {
 "StringEquals": {
 "kms:CallerAccount": "111122223333",
 "kms:ViaService": "ec2.us-west-2.amazonaws.com"
 }
 },
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:CreateGrant",
 "kms:DescribeKey"
],
 "Resource": "*"
}

kms:CustomerMasterKeySpec

AWS KMS Condition
Keys

Condition Type API Operations Policy Type

kms:CustomerMasterKeySpecString CreateKey

CMK resource
operations

IAM policies

Key policies and IAM
policies

The kms:CustomerMasterKeySpec condition key controls access to operations based on the value of
the CustomerMasterKeySpec property of the CMK that is created by or used in the operation.

You can use this condition key in an IAM policy to control access to the CreateKey operation based on the
value of the CustomerMasterKeySpec parameter in a CreateKey request. For example, you can use this
condition to allow users to create only symmetric CMKs or only CMKs with RSA keys.

The following example IAM policy statement uses the kms:CustomerMasterKeySpec condition key
to allow the principals to create a CMK only when the CustomerMasterKeySpec in the request is
RSA_4096.

{
 "Effect": "Allow",
 "Action": "kms:CreateKey",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:CustomerMasterKeySpec": "RSA_4096"
 }
 }
}

You can also use the kms:CustomerMasterKeySpec condition key to control access to operations
that use or manage a CMK based on the CustomerMasterKeySpec property of the CMK used for the
operation. The operation must be a CMK resource operation, that is, an operation that is authorized for a
particular CMK. To identify the CMK resource operations, in the Actions and Resources Table (p. 77),
look for a value of CMK in the Resources column for the operation.

91

https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateKey.html#KMS-CreateKey-request-KeySpec

AWS Key Management Service Developer Guide
AWS KMS Condition Keys

For example, the following IAM policy allows principals to perform the specified CMK resource
operations, but only with the symmetric CMKs in the account.

{
 "Effect": "Allow",
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:DescribeKey"
],
 "Resource": {
 "arn:aws:kms:us-west-2:111122223333:key/*"
 },
 "Condition": {
 "StringEquals": {
 "kms:CustomerMasterKeySpec": "SYMMETRIC_DEFAULT"
 }
 }
}

See Also

• kms:BypassPolicyLockoutSafetyCheck (p. 89)
• kms:CustomerMasterKeyUsage (p. 92)
• kms:DataKeyPairSpec (p. 93)
• kms:KeyOrigin (p. 106)

kms:CustomerMasterKeyUsage

AWS KMS Condition
Keys

Condition Type API Operations Policy Type

kms:CusomterMasterKeyUsageString CreateKey

CMK resource
operations

IAM policies

Key policies and IAM
policies

The kms:CustomerMasterKeyUsage condition key controls access to operations based on the value of
the KeyUsage property of the CMK that is created by or used in the operation.

You can use this condition key to control access to the CreateKey operation based on the value of
the KeyUsage parameter in the request. Valid values for KeyUsage are ENCRYPT_DECRYPT and
SIGN_VERIFY.

For example, you can allow a user to create a CMK only when the KeyUsage is ENCRYPT_DECRYPT or
deny a user permission when the KeyUsage is SIGN_VERIFY.

The following example IAM policy statement uses the kms:CustomerMasterKeyUsage condition key to
allow a user to create a CMK only when the KeyUsage is ENCRYPT_DECRYPT.

{
 "Effect": "Allow",
 "Action": "kms:CreateKey",
 "Resource": "*",
 "Condition": {
 "StringEquals": {

92

https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateKey.html#KMS-CreateKey-request-KeyUsage

AWS Key Management Service Developer Guide
AWS KMS Condition Keys

 "kms:CustomerMasterKeyUsage": "ENCRYPT_DECRYPT"
 }
 }
}

You can also use the kms:CustomerMasterKeyUsage condition key to control access to operations
that use or manage a CMK based on the KeyUsage property of the CMK used for the operation. The
operation must be a CMK resource operation, that is, an operation that is authorized for a particular CMK.
To identify the CMK resource operations, in the Actions and Resources Table (p. 77), look for a value of
CMK in the Resources column for the operation.

For example, the following IAM policy allows principals to perform the specified CMK resource
operations, but only with CMKs in the account that are used for signing and verification.

{
 "Effect": "Allow",
 "Action": [
 "kms:CreateGrant",
 "kms:DescribeKey",
 "kms:GetPublicKey",
 "kms:ScheduleKeyDeletion"
],
 "Resource": {
 "arn:aws:kms:us-west-2:111122223333:key/*"
 },
 "Condition": {
 "StringEquals": {
 "kms:CustomerMasterKeyUsage": "SIGN_VERIFY"
 }
 }
}

See Also

• kms:BypassPolicyLockoutSafetyCheck (p. 89)
• kms:CustomerMasterKeySpec (p. 91)
• kms:KeyOrigin (p. 106)

kms:DataKeyPairSpec

AWS KMS Condition
Keys

Condition Type API Operations Policy Type

kms:DataKeySpec String GenerateDataKeyPair

GenerateDataKeyPairWithoutPlaintext

Key policies and IAM
policies

You can use this condition key to control access to the GenerateDataKeyPair and
GenerateDataKeyPairWithoutPlaintext operations based on the value of the KeyPairSpec parameter in
the request. For example, you can allow a user to generate only particular types of data key pairs.

The following example key policy statement uses the kms:DataKeyPairSpec condition key to allow a
user to use the CMK to generate only RSA data key pairs.

{
 "Effect": "Allow",

93

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyPair.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyPairWithoutPlaintext.html

AWS Key Management Service Developer Guide
AWS KMS Condition Keys

 "Principal": {
 "AWS": "arn:aws:iam::111122223333:user/ExampleUser"
 },
 "Action": [
 "kms:GenerateDataKeyPair",
 "kms:GenerateDataKeyPairWithoutPlaintext"
],
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "kms:DataKeyPairSpec": "RSA*"
 }
 }
}

See Also

• kms:CustomerMasterKeySpec (p. 91)
• the section called “kms:EncryptionAlgorithm” (p. 94)
• the section called “kms:EncryptionContext:” (p. 96)
• the section called “kms:EncryptionContextKeys” (p. 100)

kms:EncryptionAlgorithm

AWS KMS Condition
Keys

Condition Type API Operations Policy Type

kms:EncryptionAlgorithmString Decrypt

Encrypt

GenerateDataKey

GenerateDataKeyPair

GenerateDataKeyPairWithoutPlaintext

GenerateDataKeyWithoutPlaintext

ReEncrypt

Key policies and IAM
policies

You can use the kms:EncryptionAlgorithm condition key to control access to cryptographic
operations based on the encryption algorithm that is used in the operation. For the Encrypt, Decrypt,
and ReEncrypt operations, it controls access based on the value of the EncryptionAlgorithm parameter
in the request. For operations that generate data keys and data key pairs, it controls access based on the
encryption algorithm that is used to encrypt the data key.

This condition key has no effect on operations performed outside of AWS KMS, such as encrypting with
the public key in an asymmetric CMK pair outside of AWS KMS.

EncryptionAlgorithm parameter in a request

To allow users to use only a particular encryption algorithm with a CMK, use a policy statement with
a Deny effect and a StringNotEquals condition operator. For example, the following example
key policy statement prohibits principals who can assume the ExampleRole role from using this
symmetric CMK in the specified cryptographic operations unless the encryption algorithm in the request
is RSAES_OAEP_SHA_256.

94

https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html#KMS-Decrypt-request-EncryptionAlgorithm

AWS Key Management Service Developer Guide
AWS KMS Condition Keys

Unlike a policy statement that allows a user to use a particular encryption algorithm, a policy statement
with a double-negative like this one prevents other policies and grants for this CMK from allowing this
role to use other encryption algorithms. The Deny in this policy statement takes precedence over any
key policy or IAM policy with an Allow effect, and it takes precedence over all grants for this CMK and its
principals.

{
 "Sid": "Allow only one encryption algorithm with this asymmetric CMK",
 "Effect": "Deny",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/ExampleRole"
 },
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*"
],
 "Resource": "*",
 "Condition": {
 "StringNotEquals": {
 "kms:EncryptionAlgorithm": "RSAES_OAEP_SHA_256"
 }
 }
}

Encryption algorithm used for the operation

You can also use the kms:EncryptionAlgorithm condition key to control access to the operations
that generate data keys and data key pairs. These operations use only symmetric CMKs and the
SYMMETRIC_DEFAULT algorithm.

For example, this IAM policy limits its principals to symmetric encryption. It denies access to any
CMK in the example account for cryptographic operations unless the encryption algorithm specified
in the request or used in the operation is SYMMETRIC_DEFAULT. The addition of GenerateDataKey,
GenerateDataKeyWithoutPlaintext, GenerateDataKeyPair, and GenerateDataKeyPairWithoutPlaintext
have no immediate practical effect because you can't use an asymmetric CMK or asymmetric encryption
algorithm to encrypt a data key or encrypt the private key in a data key pair.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Deny",
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:GenerateDataKeyPair*"
],
 "Resource": {
 "arn:aws:kms:us-west-2:111122223333:key/*"
 },
 "Condition": {
 "StringNotEquals": {
 "kms:EncryptionAlgorithm": "SYMMETRIC_DEFAULT"
 }
 }
}

See Also

• kms:SigningAlgorithm (p. 109)

95

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyPair.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyPairWithoutPlaintext.html

AWS Key Management Service Developer Guide
AWS KMS Condition Keys

kms:EncryptionContext:

AWS KMS Condition
Keys

Condition Type API Operations Policy Type

kms:EncryptionContext:String CreateGrant

Encrypt

Decrypt

GenerateDataKey

GenerateDataKeyPair

GenerateDataKeyPairWithoutPlaintext

GenerateDataKeyWithoutPlaintext

ReEncrypt

Key policies and IAM
policies

You can use the kms:EncryptionContext: condition key prefix to control access to a symmetric
CMK (p. 130) based on the encryption context in a request for a cryptographic operation. Use this
condition key prefix to evaluate both the key and the value in the encryption context pair. To evaluate
only the encryption context keys, use the kms:EncryptionContextKeys (p. 100) condition key.

An encryption context (p. 12) is a set of nonsecret key–value pairs that you can include in
a request for any AWS KMS cryptographic operation (Encrypt, Decrypt, GenerateDataKey,
GenerateDataKeyWithoutPlaintext, and ReEncrypt) that uses a symmetric CMK, and the CreateGrant
operation. When you specify an encryption context in an encryption operation, you must specify the
same encryption context in the decryption operation. Otherwise, the decryption request fails.

You cannot specify an encryption context in a cryptographic operation with an asymmetric
CMK (p. 130). The standard asymmetric encryption algorithms that AWS KMS uses do not support an
encryption context.

To use the kms:EncryptionContext: condition key prefix, replace the encryption_context_key
placeholder with the encryption context key. Replace the encryption_context_value placeholder
with the encryption context value.

"kms:EncryptionContext:encryption_context_key": "encryption_context_value"

For example, the following condition key specifies an encryption context in which the key is AppName
and the value is ExampleApp.

"kms:EncryptionContext:AppName": "ExampleApp"

The following example key policy statement uses this condition key. Because there can be multiple
encryption context pairs in a request, the condition operator must include ForAnyValue or
ForAllValues.

This policy allows the principal to use the CMK in a GenerateDataKey request only when at least one of
the encryption context pairs in the request is "AppName": "ExampleApp".

{

96

https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateGrant.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_multi-value-conditions.html

AWS Key Management Service Developer Guide
AWS KMS Condition Keys

 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/RoleForExampleApp"
 },
 "Action": "kms:GenerateDataKey",
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "kms:EncryptionContext:AppName": "ExampleApp"
 }
 }
}

Requiring multiple encryption context pairs

To require more than one encryption context pair, you can include multiple instances of the
kms:EncryptionContext: condition. For example, the following example policy statement uses the
ForAllValues operator to require both of the following encryption context pairs (and no others). The
order in which the pairs are specified does not matter.

• "AppName": "ExampleApp"

• "FilePath": "/var/opt/secrets/"

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/RoleForExampleApp"
 },
 "Action": "kms:GenerateDataKey",
 "Resource": "*",
 "Condition": {
 "ForAllValues:StringEquals": {
 "kms:EncryptionContext:AppName": "ExampleApp",
 "kms:EncryptionContext:FilePath": "/var/opt/secrets/"
 }
 }
}

Case sensitivity of the encryption context condition

The encryption context that is specified in a decryption operation must be an exact, case-sensitive match
for the encryption context that is specified in the encryption operation. Only the order of pairs in an
encryption context with multiple pair can vary.

However, in policy conditions, the condition key is not case sensitive. The case sensitivity of the
condition value is determined by the policy condition operator that you use, such as StringEquals or
StringEqualsIgnoreCase.

As such, the condition key, which consists of the kms:EncryptionContext: prefix and the
encryption_context_key replacement, is not case sensitive. A policy that uses this condition does
not check the case of either element of the condition key. The case sensitivity of the value, that is, the
encryption_context_value replacement, is determined by the policy condition operator.

For example, the following policy statement allows the operation when the encryption context
includes an Appname key, regardless of its capitalization. The StringEquals condition requires that
ExampleApp be capitalized as it is specified.

{
 "Effect": "Allow",

97

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html

AWS Key Management Service Developer Guide
AWS KMS Condition Keys

 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/RoleForExampleApp"
 },
 "Action": "kms:Decrypt",
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "kms:EncryptionContext:Appname": "ExampleApp"
 }
 }
}

To require a case-sensitive encryption context key, use the kms:EncryptionContextKeys (p. 100) policy
condition with a case-sensitive condition operator, such as StringEquals. In this policy condition,
because the encryption context key is the policy condition value, its case sensitivity is determined by the
condition operator.

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/RoleForExampleApp"
 },
 "Action": "kms:GenerateDataKey",
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "kms:EncryptionContextKey": "AppName"
 }
 }
}

To require a case-sensitive evaluation of both the encryption context key and value, use the
kms:EncryptionContextKeys and kms:EncryptionContext: policy conditions together in
the same policy statement. For example, in the following example policy statement, because the
StringEquals operator is case sensitive, both the encryption context key and the encryption context
value are case sensitive.

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/RoleForExampleApp"
 },
 "Action": "kms:GenerateDataKey",
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "kms:EncryptionContextKeys": "AppName",
 "kms:EncryptionContext:AppName": "ExampleApp"
 }
 }
}

Using variables in an encryption context condition

The key and value in an encryption context pair must be simple literal strings. They cannot be integers or
objects, or any type that is not fully resolved. If you use a different type, such as an integer or float, AWS
KMS interprets it as a literal string.

"encryptionContext": {
 "department": "10103.0"

98

AWS Key Management Service Developer Guide
AWS KMS Condition Keys

}

However, the value in the kms:EncryptionContext: condition key pair can be an IAM policy
variable. These policy variables are resolved at runtime based on values in the request. For example,
aws:CurrentTime resolves to the time of the request and aws:username resolves to the friendly
name of the caller.

You can use these policy variables to create a policy statement with a condition that requires very
specific information in an encryption context, such as the caller's user name. Because it contains a
variable, you can use the same policy statement for all users who can assume the role. You don't have to
write a separate policy statement for each user.

Consider a situation where you want to all users who can assume a role to use the same CMK to encrypt
and decrypt their data. However, you want to allow them to decrypt only the data that they encrypted.
Start by requiring that every request to AWS KMS include an encryption context where the key is user
and the value is the caller's AWS user name, such as the following one.

"encryptionContext": {
 "user": "bob"
}

Then, to enforce this requirement, you can use a policy statement like the one in the following example.
This policy statement gives the TestTeam role permission to encrypt and decrypt data with the CMK.
However, the permission is valid only when the encryption context in the request includes a "user":
"<username>" pair. To represent the user name, the condition uses the aws:username policy variable.

When the request is evaluated, the caller's user name replaces the variable in the condition. As such,
the condition requires an encryption context of "user": "bob" for "bob" and "user": "alice" for
"alice."

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/TestTeam"
 },
 "Action": [
 "kms:Decrypt",
 "kms:Encrypt"
]
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "kms:EncryptionContext:user": "${aws:username}"
 }
 }
}

You can use an IAM policy variable only in the value of the kms:EncryptionContext: condition key
pair. You cannot use a variable in the key.

You can also use provider-specific context keys in variables. These context keys uniquely identify users
who logged into AWS by using web identity federation.

Like all variables, these variables can be used only in the kms:EncryptionContext: policy condition,
not in the actual encryption context. And they can be used only in the value of the condition, not in the
key.

For example, the following key policy statement is similar to the previous one. However, the condition
requires an encryption context where the key is sub and the value uniquely identifies a user logged into

99

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html#policy-vars-infotouse
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers_oidc_user-id.html

AWS Key Management Service Developer Guide
AWS KMS Condition Keys

a Amazon Cognito user pool. For details about identifying users and roles in Amazon Cognito, see IAM
Roles in the Amazon Cognito Developer Guide.

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/TestTeam"
 },
 "Action": [
 "kms:Decrypt",
 "kms:Encrypt"
]
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "kms:EncryptionContext:sub": "${cognito-identity.amazonaws.com:sub}"
 }
 }
}

See Also

• the section called “kms:EncryptionContextKeys” (p. 100)
• the section called “kms:GrantConstraintType” (p. 103)

kms:EncryptionContextKeys

AWS KMS Condition
Keys

Condition Type API Operations Policy Type

kms:EncryptionContextKeysString (list) CreateGrant

Decrypt

Encrypt

GenerateDataKey

GenerateDataKeyPair

GenerateDataKeyPairWithoutPlaintext

GenerateDataKeyWithoutPlaintext

ReEncrypt

Key policies and IAM
policies

You can use the kms:EncryptionContextKeys condition key to control access to a CMK based on the
encryption context in a request for a cryptographic operation that uses a symmetric CMK (p. 130). Use
this condition key prefix to evaluate only the key in each encryption context pair. To evaluate both the
key and the value, use the kms:EncryptionContext: (p. 96) condition key prefix.

You cannot specify an encryption context in a cryptographic operation with an asymmetric
CMK (p. 130). The standard asymmetric encryption algorithms that AWS KMS uses do not support an
encryption context.

You can use this condition key to control access based on the encryption context (p. 12) in the AWS
KMS API request. Encryption context is a set of key–value pairs that you can include in AWS KMS
cryptographic operations (Encrypt, Decrypt, GenerateDataKey, GenerateDataKeyWithoutPlaintext, and

100

https://docs.aws.amazon.com/cognito/latest/developerguide/iam-roles.html
https://docs.aws.amazon.com/cognito/latest/developerguide/iam-roles.html
https://docs.aws.amazon.com/cognito/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html

AWS Key Management Service Developer Guide
AWS KMS Condition Keys

ReEncrypt) and the CreateGrant operation. Because there can be multiple encryption context pairs in a
request, the condition operator must include ForAnyValue or ForAllValues.

The following example policy statement uses the kms:EncryptionContextKeys condition key to
allow use of a CMK for the specified operations only when at least one of the encryption context pairs in
the request includes the AppName key, regardless of its value.

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/RoleForExampleApp"
 },
 "Action": [
 "kms:Encrypt",
 "kms:GenerateDataKey*"
],
 "Resource": "*",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "kms:EncryptionContextKeys": "AppName"
 }
 }
}

Because the StringEquals condition operation is case sensitive, the previous policy statement requires the
spelling and case of the encryption context key. But you can use a condition operator that ignores the
case of the key, such as StringEqualsIgnoreCase.

You can specify multiple encryption context keys in each condition. For example, the following policy
statement uses the ForAllValues and StringEquals condition operators to allow the specified
operations only when the encryption context in the request includes both the AppName and FilePath
keys (and no others), regardless of their values. The order of keys in the encryption context does not
matter.

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/RoleForExampleApp"
 },
 "Action": [
 "kms:Encrypt",
 "kms:GenerateDataKey*"
],
 "Resource": "*",
 "Condition": {
 "ForAllValues:StringEquals": {
 "kms:EncryptionContextKeys": [
 "AppName",
 "FilePath"
]
 }
 }
}

You can also use the kms:EncryptionContextKeys condition key to require an encryption context in
cryptographic operations that use the CMK.

The following example key policy statement uses the kms:EncryptionContextKeys condition key
with the Null condition operator to allow access to CMK only when the kms:EncryptionContextKeys
condition key exists (is not null) in the API request. It does not check the keys or values of the encryption
context, only that the encryption context exists.

101

https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateGrant.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_multi-value-conditions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html#Conditions_Null

AWS Key Management Service Developer Guide
AWS KMS Condition Keys

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/RoleForExampleApp"
 },
 "Action": [
 "kms:Encrypt",
 "kms:GenerateDataKey*"
],
 "Resource": "*",
 "Condition": {
 "Null": {
 "kms:EncryptionContextKeys": false
 }
 }
}

See Also

• kms:EncryptionContext: (p. 96)
• kms:GrantConstraintType (p. 103)

kms:ExpirationModel

AWS KMS Condition
Keys

Condition Type API Operations Policy Type

kms:ExpirationModel String ImportKeyMaterial Key policies and IAM
policies

The kms:ExpirationModel condition key controls access to the ImportKeyMaterial operation based on
the value of the ExpirationModel parameter in the request.

ExpirationModel is an optional parameter that determines whether the imported key material
expires. Valid values are KEY_MATERIAL_EXPIRES and KEY_MATERIAL_DOES_NOT_EXPIRE.
KEY_MATERIAL_EXPIRES is the default value.

The expiration date and time is determined by the value of the ValidTo parameter. The
ValidTo parameter is required unless the value of the ExpirationModel parameter is
KEY_MATERIAL_DOES_NOT_EXPIRE. You can also use the kms:ValidTo (p. 110) condition key to
require a particular expiration date as a condition for access.

The following example policy statement uses the kms:ExpirationModel condition key to allow a user
to import key material into a CMK only when the request includes the ExpirationModel parameter
and its value is KEY_MATERIAL_DOES_NOT_EXPIRE.

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:user/ExampleUser"
 },
 "Action": "kms:ImportKeyMaterial",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:ExpirationModel": "KEY_MATERIAL_DOES_NOT_EXPIRE"
 }

102

https://docs.aws.amazon.com/kms/latest/APIReference/API_ImportKeyMaterial.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ImportKeyMaterial.html#KMS-ImportKeyMaterial-request-ExpirationModel
https://docs.aws.amazon.com/kms/latest/APIReference/API_ImportKeyMaterial.html#KMS-ImportKeyMaterial-request-ValidTo

AWS Key Management Service Developer Guide
AWS KMS Condition Keys

 }
}

You can also use the kms:ExpirationModel condition key to allow a user to import key material
only when the key material expires, without specifying an expiration date (p. 110) in the condition.
The following example policy statement uses the kms:ExpirationModel condition key with the
Null condition operator to allow a user to import key material only when the request does not have an
ExpirationModel parameter.

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:user/ExampleUser"
 },
 "Action": "kms:ImportKeyMaterial",
 "Resource": "*",
 "Condition": {
 "Null": {
 "kms:ExpirationModel": true
 }
 }
}

See Also

• kms:ValidTo (p. 110)

• kms:WrappingAlgorithm (p. 113)

• kms:WrappingKeySpec (p. 114)

kms:GrantConstraintType

AWS KMS Condition
Keys

Condition Type API Operations Policy Type

kms:GrantConstraintTypeString CreateGrant Key policies and IAM
policies

You can use this condition key to control access to the CreateGrant operation based on the type of grant
constraint in the request.

When you create a grant, you can optionally specify a grant constraint to allow the operations that the
grant permit only when a particular encryption context (p. 12) is present. The grant constraint can be
one of two types: EncryptionContextEquals or EncryptionContextSubset. You can use this
condition key to check that the request contains one type or the other.

The following example policy statement uses the kms:GrantConstraintType condition key to allow a
user to create grants only when the request includes an EncryptionContextEquals grant constraint.
The example shows a policy statement in a key policy.

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:user/ExampleUser"
 },
 "Action": "kms:CreateGrant",

103

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html#Conditions_Null
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateGrant.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GrantConstraints.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GrantConstraints.html

AWS Key Management Service Developer Guide
AWS KMS Condition Keys

 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:GrantConstraintType": "EncryptionContextEquals"
 }
 }
}

See Also

• kms:EncryptionContext: (p. 96)

• kms:EncryptionContextKeys (p. 100)

• kms:GrantIsForAWSResource (p. 104)

• kms:GrantOperations (p. 105)

• kms:GranteePrincipal (p. 105)

• kms:RetiringPrincipal (p. 108)

kms:GrantIsForAWSResource

AWS KMS Condition
Keys

Condition Type API Operations Policy Type

kms:GrantIsForAWSResourceBoolean CreateGrant

ListGrants

RevokeGrant

Key policies and IAM
policies

Allows or denies access to the CreateGrant, ListGrants, or RevokeGrant operations when any of the
AWS services that is integrated with AWS KMS performs the grant operation on the user's behalf. This
condition key does not affect the user's permissions to perform the grant operation directly.

For example, the following key policy statement uses the kms:GrantIsForAWSResource condition key.
It allows a user to create grants on this CMK only when the grant is created on the user's behalf by any
one of the integrated services. It does not allow the user to create grants directly.

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:user/ExampleUser"
 },
 "Action": "kms:CreateGrant",
 "Resource": "*",
 "Condition": {
 "Bool": {
 "kms:GrantIsForAWSResource": true
 }
 }
}

See Also

• kms:GrantConstraintType (p. 103)

• kms:GrantOperations (p. 105)

104

https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateGrant.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ListGrants.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_RevokeGrant.html
https://aws.amazon.com/kms/features/#AWS_Service_Integration

AWS Key Management Service Developer Guide
AWS KMS Condition Keys

• kms:GranteePrincipal (p. 105)
• kms:RetiringPrincipal (p. 108)

kms:GrantOperations

AWS KMS Condition
Keys

Condition Type API Operations Policy Type

kms:GrantOperations String CreateGrant Key policies and IAM
policies

You can use this condition key to control access to the CreateGrant operation based on the grant
operations in the request. For example, you can allow a user to create grants that delegate permission to
encrypt but not decrypt.

The following example policy statement uses the kms:GrantOperations condition key to allow a user
to create grants that delegate permission to encrypt and re-encrypt when this CMK is the destination
CMK. The example shows a policy statement in a key policy.

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:user/ExampleUser"
 },
 "Action": "kms:CreateGrant",
 "Resource": "*",
 "Condition": {
 "ForAllValues:StringEquals": {
 "kms:GrantOperations": [
 "Encrypt",
 "ReEncryptTo"
]
 }
 }
}

See Also

• kms:GrantConstraintType (p. 103)
• kms:GrantIsForAWSResource (p. 104)
• kms:GranteePrincipal (p. 105)
• kms:RetiringPrincipal (p. 108)

kms:GranteePrincipal

AWS KMS Condition
Keys

Condition Type API Operations Policy Type

kms:GranteePrincipalString CreateGrant IAM and key policies

You can use this condition key to control access to the CreateGrant operation based on the value of the
GranteePrincipal parameter in the request. For example, you can allow a user to create grants to use a

105

https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateGrant.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateGrant.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateGrant.html#KMS-CreateGrant-request-GranteePrincipal

AWS Key Management Service Developer Guide
AWS KMS Condition Keys

CMK only when the grantee principal in the CreateGrant request matches the principal specified in the
condition statement.

The following example policy statement uses the kms:GranteePrincipal condition key to allow a
user to create grants for a CMK only when the grantee principal in the grant is the LimitedAdminRole.

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:user/ExampleUser"
 },
 "Action": "kms:CreateGrant",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:GranteePrincipal": "arn:aws:iam::111122223333:role/LimitedAdminRole"
 }
 }
}

See Also

• kms:GrantConstraintType (p. 103)
• kms:GrantIsForAWSResource (p. 104)
• kms:GrantOperations (p. 105)
• kms:RetiringPrincipal (p. 108)

kms:KeyOrigin

AWS KMS Condition
Keys

Condition Type API Operations Policy Type

kms:KeyOrigin String CreateKey

CMK resource
operations

IAM policies

Key policies and IAM
policies

The kms:KeyOrigin condition key controls access to operations based on the value of the Origin
property of the CMK that is created by or used in the operation.

You can use this condition key to control access to the CreateKey operation based on the value of the
Origin parameter in the request. Valid values for Origin are AWS_KMS, AWS_CLOUDHSM, and EXTERNAL.

For example, you can allow a user to create a CMK only when the key material is generated in KMS
(AWS_KMS), only when the key material is generated in an AWS CloudHSM cluster that is associated with
a custom key store (p. 172) (AWS_CLOUDHSM), or only when the key material is imported (p. 147) from
an external source (EXTERNAL).

The following example policy statement uses the kms:KeyOrigin condition key to allow a user to
create a CMK only when AWS KMS creates the key material.

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:user/ExampleUser"
 },

106

https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateKey.html#KMS-CreateKey-request-Origin

AWS Key Management Service Developer Guide
AWS KMS Condition Keys

 "Action": "kms:CreateKey",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:KeyOrigin": "AWS_KMS"
 }
 }
}

You can also use the kms:KeyOrigin condition key to control access to operations that use or manage
a CMK based on the Origin property of the CMK used for the operation. The operation must be a
CMK resource operation, that is, an operation that is authorized for a particular CMK. To identify the
CMK resource operations, in the Actions and Resources Table (p. 77), look for a value of CMK in the
Resources column for the operation.

For example, the following IAM policy allows principals to perform the specified CMK resource
operations, but only with CMKs in the account that were created in a custom key store.

{
 "Effect": "Allow",
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:GenerateDataKey",
 "kms:GenerateDataKeyWithoutPlaintext",
 "kms:GenerateDataKeyPair",
 "kms:GenerateDataKeyPairWithoutPlaintext",
 "kms:ReEncrypt*"
],
 "Resource": {
 "arn:aws:kms:us-west-2:111122223333:key/*"
 },
 "Condition": {
 "StringEquals": {
 "kms:KeyOrigin": "AWS_CLOUDHSM"
 }
 }
}

See Also

• kms:BypassPolicyLockoutSafetyCheck (p. 89)
• kms:CustomerMasterKeySpec (p. 91)
• kms:CustomerMasterKeyUsage (p. 92)

kms:MessageType

AWS KMS Condition
Keys

Condition Type API Operations Policy Type

kms:MessageType String Sign

Verify

Key policies and IAM
policies

The kms:MessageType condition key controls access to the Sign and Verify operations based on
the value of the MessageType parameter in the request. Valid values for MessageType are RAW and
DIGEST.

107

https://docs.aws.amazon.com/kms/latest/APIReference/API_Sign.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Verify.html

AWS Key Management Service Developer Guide
AWS KMS Condition Keys

For example, the following key policy statement uses the kms:MessageType condition key to allow a
user to use an asymmetric CMK to sign a message, but not a message digest.

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:user/ExampleUser"
 },
 "Action": "kms:Sign",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:MessageType": "RAW"
 }
 }
}

See Also

• the section called “kms:SigningAlgorithm” (p. 109)

kms:ReEncryptOnSameKey

AWS KMS Condition
Keys

Condition Type API Operations Policy Type

kms:ReEncryptOnSameKeyBoolean ReEncrypt Key policies and IAM
policies

You can use this condition key to control access to the ReEncrypt operation based on whether the
request specifies a destination CMK that is the same one used for the original encryption. For example,
the following policy statement uses the kms:ReEncryptOnSameKey condition key to allow a user to
reencrypt only when the destination CMK is the same one used for the original encryption. The example
shows a policy statement in a key policy.

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:user/ExampleUser"
 },
 "Action": "kms:ReEncrypt*",
 "Resource": "*",
 "Condition": {
 "Bool": {
 "kms:ReEncryptOnSameKey": true
 }
 }
}

kms:RetiringPrincipal

AWS KMS Condition
Keys

Condition Type API Operations Policy Type

kms:RetiringPrincipalString (list) CreateGrant Key policies and IAM
policies

108

https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html

AWS Key Management Service Developer Guide
AWS KMS Condition Keys

You can use this condition key to control access to the CreateGrant operation based on the value of
the RetiringPrincipal parameter in the request. For example, you can allow a user to create grants
to use a CMK only when the RetiringPrincipal in the CreateGrant request matches the
RetiringPrincipal in the condition statement.

The following example policy statement allows a user to create grants for the CMK. The
kms:RetiringPrincipal condition key restricts the permission to CreateGrant requests where the
retiring principal in the grant is either the LimitedAdminRole or the OpsAdmin user.

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:user/ExampleUser"
 },
 "Action": "kms:CreateGrant",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:RetiringPrincipal": [
 "arn:aws:iam::111122223333:role/LimitedAdminRole",
 "arn:aws:iam::111122223333:user/OpsAdmin"
]
 }
 }
}

See Also

• kms:GrantConstraintType (p. 103)

• kms:GrantIsForAWSResource (p. 104)

• kms:GrantOperations (p. 105)

• kms:GranteePrincipal (p. 105)

kms:SigningAlgorithm

AWS KMS Condition
Keys

Condition Type API Operations Policy Type

kms:SigningAlgorithmString Sign

Verify

Key policies and IAM
policies

You can use the kms:SigningAlgorithm condition key to control access to the Sign and Verify
operations based on the value of the SigningAlgorithm parameter in the request. This condition key has
no effect on operations performed outside of AWS KMS, such as verifying signatures with the public key
in an asymmetric CMK pair outside of AWS KMS.

The following example key policy allows users who can assume the testers role to use the CMK to sign
messages only when the signing algorithm used for the request is an RSASSA_PSS algorithm, such as
RSASSA_PSS_SHA512.

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/testers"

109

https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateGrant.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateGrant.html#KMS-CreateGrant-request-RetiringPrincipal
https://docs.aws.amazon.com/kms/latest/APIReference/API_Sign.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Verify.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Sign.html#KMS-Sign-request-SigningAlgorithm

AWS Key Management Service Developer Guide
AWS KMS Condition Keys

 },
 "Action": "kms:Sign",
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "kms:SigningAlgorithm": "RSASSA_PSS*"
 }
 }
}

See Also

• kms:EncryptionAlgorithm (p. 94)

• the section called “kms:MessageType” (p. 107)

kms:ValidTo

AWS KMS Condition
Keys

Condition Type API Operations Policy Type

kms:ValidTo Timestamp ImportKeyMaterial Key policies and IAM
policies

The kms:ValidTo condition key controls access to the ImportKeyMaterial operation based on the value
of the ValidTo parameter in the request, which determines when the imported key material expires. The
value is expressed in Unix time.

By default, the ValidTo parameter is required in an ImportKeyMaterial request. However, if
the value of the ExpirationModel parameter is KEY_MATERIAL_DOES_NOT_EXPIRE, the ValidTo
parameter is invalid. You can also use the kms:ExpirationModel (p. 102) condition key to require the
ExpirationModel parameter or a specific parameter value.

The following example policy statement allows a user to import key material into a CMK. The
kms:ValidTo condition key limits the permission to ImportKeyMaterial requests where the
ValidTo value is less than or equal to 1546257599.0 (December 31, 2018 11:59:59 PM).

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:user/ExampleUser"
 },
 "Action": "kms:ImportKeyMaterial",
 "Resource": "*",
 "Condition": {
 "NumericLessThanEquals": {
 "kms:ValidTo": "1546257599.0"
 }
 }
}

See Also

• kms:ExpirationModel (p. 102)

• kms:WrappingAlgorithm (p. 113)

• kms:WrappingKeySpec (p. 114)

110

https://docs.aws.amazon.com/kms/latest/APIReference/API_ImportKeyMaterial.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ImportKeyMaterial.html#KMS-ImportKeyMaterial-request-ValidTo
https://en.wikipedia.org/wiki/Unix_time
https://docs.aws.amazon.com/kms/latest/APIReference/API_ImportKeyMaterial.html#KMS-ImportKeyMaterial-request-ExpirationModel

AWS Key Management Service Developer Guide
AWS KMS Condition Keys

kms:ViaService

AWS KMS Condition
Keys

Condition Type API Operations Policy Type

kms:ViaService String The kms:ViaService
condition key is
valid for all AWS
KMS operations
except: CreateKey,
GenerateRandom,
ListAliases, ListKeys,
ListRetirableGrants,
RetireGrant, and
the API operations
that create and
manage custom key
stores (p. 172).

Key policies and IAM
policies

The kms:ViaService condition key limits use of an AWS KMS customer master key (p. 2) (CMK) to
requests from specified AWS services. You can specify one or more services in each kms:ViaService
condition key.

For example, the following statement from a key policy uses the kms:ViaService condition key to
allow a customer managed CMK (p. 3) to be used for the specified actions only when the request comes
from Amazon EC2 or Amazon RDS in the US West (Oregon) region on behalf of ExampleUser.

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:user/ExampleUser"
 },
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:CreateGrant",
 "kms:ListGrants",
 "kms:DescribeKey"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:ViaService": [
 "ec2.us-west-2.amazonaws.com",
 "rds.us-west-2.amazonaws.com"
]
 }
 }
}

You can also use a kms:ViaService condition key to deny permission to use a CMK when the request
comes from particular services. For example, the following policy statement from a key policy uses a
kms:ViaService condition key to prevent a customer managed CMK from being used for Encrypt
operations when the request comes from AWS Lambda on behalf of ExampleUser.

{

111

url-kms-api;API_CreateKey.html
url-kms-api;API_GenerateRandom.html
url-kms-api;API_ListAliases.html
url-kms-api;API_ListKeys.html
url-kms-api;API_ListRetirableGrants.html
url-kms-api;API_RetireGrant.html

AWS Key Management Service Developer Guide
AWS KMS Condition Keys

 "Effect": "Deny",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:user/ExampleUser"
 },
 "Action": [
 "kms:Encrypt"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:ViaService": [
 "lambda.us-west-2.amazonaws.com"
]
 }
 }
}

Important
When you use the kms:ViaService condition key, the service makes the request on behalf of a
principal in the AWS account. These principals must have the following permissions:

• Permission to use the CMK. The principal needs to grant these permissions to the integrated
service so the service can use the customer managed CMK on behalf of the principal. For more
information, see How AWS Services use AWS KMS (p. 228).

• Permission to use the integrated service. For details about giving users access to an AWS
service that integrates with AWS KMS, consult the documentation for the integrated service.

All AWS managed CMKs (p. 4) use a kms:ViaService condition key in their key policy document. This
condition allows the CMK to be used only for requests that come from the service that created the CMK.
To see the key policy for an AWS managed CMK, use the GetKeyPolicy operation.

The kms:ViaService condition key is valid in IAM and key policy statements. The services that you
specify must be integrated with AWS KMS and support the kms:ViaService condition key.

The following table lists AWS services that are integrated with AWS KMS, support customer managed
CMKs, and support the use of the kms:ViaService condition key in customer managed CMKs. The
services in this table might not be available in all regions.

Services that support the kms:ViaService condition key in customer managed CMKs

Service Name KMS ViaService Name

AWS Backup backup.AWS_region.amazonaws.com

Amazon Connect connect.AWS_region.amazonaws.com

AWS Database Migration Service (AWS DMS) dms.AWS_region.amazonaws.com

AWS Directory Service directoryservice.AWS_region.amazonaws.com

Amazon EC2 Systems Manager ssm.AWS_region.amazonaws.com

Amazon Elastic Block Store (Amazon EBS) ec2.AWS_region.amazonaws.com (EBS only)

Amazon Elastic File System elasticfilesystem.AWS_region.amazonaws.com

Amazon Elasticsearch Service es.AWS_region.amazonaws.com

Amazon FSx fsx.AWS_region.amazonaws.com

AWS Glue glue.AWS_region.amazonaws.com

112

https://docs.aws.amazon.com/kms/latest/APIReference/API_GetKeyPolicy.html
https://aws.amazon.com/kms/features/#AWS_Service_Integration

AWS Key Management Service Developer Guide
AWS KMS Condition Keys

Service Name KMS ViaService Name

Amazon Kinesis kinesis.AWS_region.amazonaws.com

Amazon Kinesis Video Streams kinesisvideo.AWS_region.amazonaws.com

AWS Lambda lambda.AWS_region.amazonaws.com

Amazon Lex lex.AWS_region.amazonaws.com

Amazon Managed Streaming for Apache Kafka kafka.AWS_region.amazonaws.com

Amazon Neptune rds.AWS_region.amazonaws.com

Amazon Redshift redshift.AWS_region.amazonaws.com

Amazon Relational Database Service (Amazon
RDS)

rds.AWS_region.amazonaws.com

Amazon RDS Performance Insights rds.AWS_region.amazonaws.com

AWS Secrets Manager (Secrets Manager) secretsmanager.AWS_region.amazonaws.com

Amazon Simple Email Service (Amazon SES) ses.AWS_region.amazonaws.com

Amazon Simple Notification Service (Amazon
SNS)

sns.AWS_region.amazonaws.com

Amazon Simple Storage Service (Amazon S3) s3.AWS_region.amazonaws.com

AWS Snowball importexport.AWS_region.amazonaws.com

Amazon SQS sqs.AWS_region.amazonaws.com

Amazon WorkMail workmail.AWS_region.amazonaws.com

Amazon WorkSpaces workspaces.AWS_region.amazonaws.com

AWS X-Ray xray.AWS_region.amazonaws.com

kms:WrappingAlgorithm

AWS KMS Condition
Keys

Condition Type API Operations Policy Type

kms:WrappingAlgorithmString GetParametersForImportKey policies and IAM
policies

This condition key controls access to the GetParametersForImport operation based on the value of the
WrappingAlgorithm parameter in the request. You can use this condition to require principals to use a
particular algorithm to encrypt key material during the import process. Requests for the required public
key and import token fail when they specify a different wrapping algorithm.

The following example policy statement uses the kms:WrappingAlgorithm condition key to give
the example user permission to call the GetParametersForImport operation, but prevents them
from using the RSAES_OAEP_SHA_1 wrapping algorithm. When the WrappingAlgorithm in the
GetParametersForImport request is RSAES_OAEP_SHA_1, the operation fails.

113

https://docs.aws.amazon.com/kms/latest/APIReference/API_GetParametersForImport.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetParametersForImport.html#KMS-GetParametersForImport-request-WrappingAlgorithm

AWS Key Management Service Developer Guide
AWS KMS Condition Keys

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:user/ExampleUser"
 },
 "Action": "kms:GetParametersForImport",
 "Resource": "*",
 "Condition": {
 "StringNotEquals": {
 "kms:WrappingAlgorithm": "RSAES_OAEP_SHA_1"
 }
 }
}

See Also

• kms:ExpirationModel (p. 102)
• kms:ValidTo (p. 110)
• kms:WrappingKeySpec (p. 114)

kms:WrappingKeySpec

AWS KMS Condition
Keys

Condition Type API Operations Policy Type

kms:WrappingKeySpec String GetParametersForImportKey policies and IAM
policies

This condition key controls access to the GetParametersForImport operation based on the value of the
WrappingKeySpec parameter in the request. You can use this condition to require principals to use a
particular type of public key during the import process. If the request specifies a different key type, it
fails.

Because the only valid value for the WrappingKeySpec parameter value is RSA_2048, preventing users
from using this value effectively prevents them from using the GetParametersForImport operation.

The following example policy statement uses the kms:WrappingAlgorithm condition key to require
that the WrappingKeySpec in the request is RSA_2048.

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:user/ExampleUser"
 },
 "Action": "kms:GetParametersForImport",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:WrappingKeySpec": "RSA_2048"
 }
 }
}

See Also

• kms:ExpirationModel (p. 102)

114

https://docs.aws.amazon.com/kms/latest/APIReference/API_GetParametersForImport.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetParametersForImport.html#KMS-GetParametersForImport-request-WrappingKeySpec

AWS Key Management Service Developer Guide
Using Grants

• kms:ValidTo (p. 110)
• kms:WrappingAlgorithm (p. 113)

Using Grants
AWS KMS supports two resource-based access control mechanisms: key policies (p. 50) and grants.
With grants you can programmatically delegate the use of KMS customer master keys (CMKs) to other
AWS principals. You can use them to allow access, but not deny it. Because grants can be very specific,
and are easy to create and revoke, they are often used to provide temporary permissions or more
granular permissions.

You can also use key policies to allow other principals to access a CMK, but key policies work best for
relatively static permission assignments. Also, key policies use the standard permissions model for AWS
policies in which users either have or do not have permission to perform an action with a resource.
For example, users with the kms:PutKeyPolicy permission for a CMK can completely replace the
key policy for a CMK with a different key policy of their choice. To enable more granular permissions
management, use grants.

For code examples that demonstrate how to work with grants, see Working with Grants (p. 337).

Create a Grant
To create a grant, call the CreateGrant operation. Specify a CMK, the grantee principal that the grant
allows to use the CMK, and a list of allowed operations. The CreateGrant operation returns a grant ID
that you can use to identify the grant in subsequent operations. To customize the grant, use optional
Constraints parameters to define grant constraints.

For example, the following CreateGrant command creates a grant that allows exampleUser
to call the Decrypt operation on the specified symmetric CMK (p. 130). The grant uses the
RetiringPrincipal parameter to designate a principal that can retire the grant. It also includes a
grant constraint that allows the permission only when the encryption context (p. 12) in the request
includes "Department": "IT".

$ aws kms create-grant \
 --key-id 1234abcd-12ab-34cd-56ef-1234567890ab \
 --grantee-principal arn:aws:iam::111122223333:user/exampleUser \
 --operations Decrypt \
 --retiring-principal arn:aws:iam::111122223333:role/adminRole \
 --constraints EncryptionContextSubset={Department=IT}

To view the grant, use the ListGrants operation.

$ aws kms list-grants --key-id 1234abcd-12ab-34cd-56ef-1234567890ab
{
 "Grants": [
 {
 "KeyId": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "CreationDate": 1572216195.0,
 "GrantId": "abcde1237f76e4ba7987489ac329fbfba6ad343d6f7075dbd1ef191f0120514",
 "Constraints": {
 "EncryptionContextSubset": {
 "Department": "IT"
 }
 },
 "RetiringPrincipal": "arn:aws:iam::111122223333:role/adminRole",

115

https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateGrant.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GrantConstraints.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ListGrants.html

AWS Key Management Service Developer Guide
Grants for Symmetric and Asymmetric CMKs

 "Name": "",
 "IssuingAccount": "arn:aws:iam::111122223333:root",
 "GranteePrincipal": "arn:aws:iam::111122223333:user/exampleUser",
 "Operations": [
 "Decrypt"
]
 }
]
}

Grants can be revoked (deleted) by any user who has the kms:RevokeGrant permission on the CMK.

Grants can be retired by any of the following principals:

• The AWS account (root user) in which the grant was created
• The retiring principal in the grant, if any
• The grantee principal, if the grant includes kms:RetireGrant permission

Grants for Symmetric and Asymmetric CMKs
You can create a grant that controls access to a symmetric CMK or an asymmetric CMK. However, you
cannot create a grant that allows a principal to perform an operation that is not supported by the CMK.
If you try, AWS KMS returns a ValidationError exception.

Symmetric CMKs

Grants for symmetric CMKs cannot allow the Sign, Verify, or GetPublicKey operations. (There are
limited exceptions to this rule for legacy operations, but you should not create a grant for an
operation that AWS KMS does not support.)

Asymmetric CMKs

Grants for asymmetric CMKs cannot allow operations that generate data keys or data key pairs.
They also cannot allow operations related to automatic key rotation (p. 142), imported key
material (p. 147), or CMKs in custom key stores (p. 172).

Grants for CMKs with a key usage of SIGN_VERIFY cannot allow encryption operations. Grants for
CMKs with a key usage of ENCRYPT_DECRYPT cannot allow the Sign or Verify operations.

Grant Constraints
Grant constraints set conditions on the permissions that the grantee principal can perform. AWS KMS
supports two supported constraints, both of which involve the encryption context (p. 12) in a request for
a cryptographic operation.

Note
You cannot use encryption context grant constraints in a grant for an asymmetric CMK. The
asymmetric encryption algorithms that AWS KMS uses do not support an encryption context.

• EncryptionContextEquals specifies that the grant applies only when the encryption context
pairs in the request are an exact, case-sensitive match for the encryption context pairs in the grant
constraint. The pairs can appear in any order, but the keys and values in each pair cannot vary.

• EncryptionContextSubset specifies that the grant applies only when the encryption context in the
request includes the encryption context specified in the grant constraint. The encryption context in the
request must be an exact, case-sensitive match of the encryption context in the constraint, but it can
include additional encryption context pairs. The pairs can appear in any order, but the keys and values
in each included pair cannot vary.

116

https://docs.aws.amazon.com/kms/latest/APIReference/API_RevokeGrant.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_RetireGrant.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Sign.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Verify.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GrantConstraints.html

AWS Key Management Service Developer Guide
Authorizing CreateGrant in a Key Policy

For example, consider a grant that allows GenerateDataKey and Decrypt operations. It includes an
EncryptionContextSubset constraint with the following values.

{"Department":"Finance","Classification":"Public"}

In this example, any of the following encryption context values would satisfy the
EncryptionContextSubset constraint.

• {"Department":"Finance","Classification":"Public"}

• {"Classification":"Public","Department":"Finance"}

• {"Customer":"12345","Department":"Finance","Classification":"Public","Purpose":"Test"}

However, the following encryption context values would not satisfy the constraint, either because they
are incomplete or do not include an exact, case-sensitive match of the specified pairs.

• {"Department":"Finance"}

• {"department":"finance","classification":"public"}

• {"Classification":"Public","Customer":"12345"}

Authorizing CreateGrant in a Key Policy
When you create a key policy to control access to the CreateGrant operation, you can use one or more
policy conditions to limit the permission. AWS KMS supports all of the following grant-related condition
keys. For detailed information about these condition keys, see AWS KMS Condition Keys (p. 88).

• kms:GrantConstraintType (p. 103)
• kms:GrantIsForAWSResource (p. 104)
• kms:GrantOperations (p. 105)
• kms:GranteePrincipal (p. 105)
• kms:RetiringPrincipal (p. 108)

Granting CreateGrant Permission
When a grant includes permission to call the CreateGrant operation, the grant only allows the grantee
principal to create grants that are equally restrictive or more restrictive.

For example, consider a grant that allows the grantee principal to call the GenerateDataKey, Decrypt,
and CreateGrant operations. The grantee principal can use this permission to create a grant that
includes any subset of the operations specified in the parent grant, such as GenerateDataKey and
Decrypt. But it cannot include other operations, such as ScheduleKeyDeletion or ReEncrypt.

Also, the grant constraints in child grants must be equally restrictive or more restrictive than those
in the parent grant. For example, the child grant can add pairs to an EncryptionContextSubset
constraint in the parent grant, but it cannot remove them. The child grant can change an
EncryptionContextSubset constraint to an EncryptionContextEquals constraint, but not the
reverse.

Using Service-Linked Roles for AWS KMS
AWS Key Management Service uses AWS Identity and Access Management (IAM) service-linked roles. A
service-linked role is a unique type of IAM role that is linked directly to AWS KMS. Service-linked roles are

117

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateGrant.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GrantConstraints.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role

AWS Key Management Service Developer Guide
Service-Linked Role Permissions
for AWS KMS Custom Key Stores

defined by AWS KMS and include all the permissions that the service requires to call other AWS services
on your behalf.

A service-linked role makes setting up AWS KMS easier because you don’t have to manually add the
necessary permissions. AWS KMS defines the permissions of its service-linked roles, and unless defined
otherwise, only AWS KMS can assume its roles. The defined permissions include the trust policy and the
permissions policy, and that permissions policy cannot be attached to any other IAM entity.

You can delete a service-linked role only after first deleting the related resources. This protects your AWS
KMS resources because you can't inadvertently remove permission to access the resources.

For information about other services that support service-linked roles, see AWS Services That Work with
IAM and look for the services that have Yes in the Service-Linked Role column. Choose a Yes with a link
to view the service-linked role documentation for that service.

Service-Linked Role Permissions for AWS KMS
Custom Key Stores
AWS KMS uses a service-linked role named
AWSServiceRoleForKeyManagementServiceCustomKeyStores to support custom key stores (p. 172).
This service-linked role gives AWS KMS permission to view your AWS CloudHSM clusters and create the
network infrastructure to support a connection between your custom key store and its AWS CloudHSM
cluster. AWS KMS creates this role only when you create a custom key store (p. 172). You cannot create
this service-linked role directly.

The AWSServiceRoleForKeyManagementServiceCustomKeyStores service-linked role trusts
cks.kms.amazonaws.com to assume the role. As a result, only AWS KMS can assume this service-linked
role.

The permissions in the role are limited to the actions that AWS KMS performs to connect a custom key
store to an AWS CloudHSM cluster. It does not give AWS KMS any additional permissions. For example,
AWS KMS does not have permission to create, manage, or delete your AWS CloudHSM clusters, HSMs, or
backups.

For more information about the AWSServiceRoleForKeyManagementServiceCustomKeyStores role,
including a list of permissions and instructions for how to view the role, edit the role description, delete
the role, and have AWS KMS recreate it for you, see Authorizing AWS KMS to Manage AWS CloudHSM
and Amazon EC2 Resources (p. 177).

Determining Access to an AWS KMS Customer
Master Key

To determine the full extent of who or what currently has access to a customer master key (CMK) in AWS
KMS, you must examine the CMK's key policy, all grants (p. 115) that apply to the CMK, and potentially
all AWS Identity and Access Management (IAM) policies. You might do this to determine the scope of
potential usage of a CMK, or to help you meet compliance or auditing requirements. The following topics
can help you generate a complete list of the AWS principals (identities) that currently have access to a
CMK.

Topics
• Examining the Key Policy (p. 119)
• Examining IAM Policies (p. 121)
• Examining Grants (p. 122)
• Troubleshooting Key Access (p. 123)

118

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

AWS Key Management Service Developer Guide
Examining the Key Policy

Examining the Key Policy
Key policies (p. 50) are the primary way to control access to AWS KMS customer master keys (CMKs).

When a key policy consists of or includes the default key policy (p. 52), the key policy allows IAM
administrators in the account to use IAM policies to control access to the CMK. Also, if the key policy
gives another AWS account (p. 71) permission to use the CMK, the IAM administrators in the external
account can use IAM policies to delegate those permissions. To determine the complete list of principals
that can access the CMK, examine IAM the policies (p. 121).

To view the key policy of an AWS KMS customer managed CMK (p. 3) or AWS managed CMK (p. 4) in your
account, use the AWS Management Console or the GetKeyPolicy operation in the AWS KMS API. To view
the key policy, you must have kms:GetKeyPolicy permissions for the CMK. For instructions for viewing
the key policy for a CMK, see the section called “Viewing a Key Policy” (p. 61).

Examine the key policy document and take note of all principals specified in each policy statement's
Principal element. The IAM users, IAM roles, and AWS accounts in the Principal elements are those
that have access to this CMK.

Note
Do not set the Principal to an asterisk (*) in any key policy statement that allows permissions.
An asterisk gives every identity in every AWS account permission to use the CMK, unless another
policy statement explicitly denies it. Users in other AWS accounts just need corresponding IAM
permissions in their own accounts to use the CMK.

The following examples use the policy statements found in the default key policy (p. 51) to
demonstrate how to do this.

Example Policy Statement 1

{
 "Sid": "Enable IAM User Permissions",
 "Effect": "Allow",
 "Principal": {"AWS": "arn:aws:iam::111122223333:root"},
 "Action": "kms:*",
 "Resource": "*"
}

In the preceding policy statement, arn:aws:iam::111122223333:root refers to the AWS account
111122223333. By default, a policy statement like this one is present in the key policy document when
you create a new CMK with the console. It is also present when you create a new CMK programmatically
but do not provide a key policy.

A key policy document with a statement that allows access to the AWS account (root user) enables IAM
policies in the account to allow access to the CMK (p. 52). This means that IAM users and roles in the
account might have access to the CMK even if they are not explicitly listed as principals in the key policy
document. Take care to examine all IAM policies (p. 121) in all AWS accounts listed as principals to
determine whether they allow access to this CMK.

Example Policy Statement 2

{
 "Sid": "Allow access for Key Administrators",
 "Effect": "Allow",
 "Principal": {"AWS": "arn:aws:iam::111122223333:user/KMSKeyAdmin"},
 "Action": [
 "kms:Describe*",
 "kms:Put*",
 "kms:Create*",
 "kms:Update*",
 "kms:Enable*",

119

https://docs.aws.amazon.com/kms/latest/APIReference/API_GetKeyPolicy.html

AWS Key Management Service Developer Guide
Examining the Key Policy

 "kms:Revoke*",
 "kms:List*",
 "kms:Disable*",
 "kms:Get*",
 "kms:Delete*",
 "kms:ScheduleKeyDeletion",
 "kms:CancelKeyDeletion"
],
 "Resource": "*"
}

In the preceding policy statement, arn:aws:iam::111122223333:user/KMSKeyAdmin refers to the
IAM user named KMSKeyAdmin in AWS account 111122223333. This user is allowed to perform the
actions listed in the policy statement, which are the administrative actions for managing a CMK.

Example Policy Statement 3

{
 "Sid": "Allow use of the key",
 "Effect": "Allow",
 "Principal": {"AWS": "arn:aws:iam::111122223333:role/EncryptionApp"},
 "Action": [
 "kms:DescribeKey",
 "kms:GenerateDataKey*",
 "kms:Encrypt",
 "kms:ReEncrypt*",
 "kms:Decrypt"
],
 "Resource": "*"
}

In the preceding policy statement, arn:aws:iam::111122223333:role/EncryptionApp refers to
the IAM role named EncryptionApp in AWS account 111122223333. Principals that can assume this role
are allowed to perform the actions listed in the policy statement, which are the cryptographic actions for
encrypting and decrypting data with a CMK.

Example Policy Statement 4

{
 "Sid": "Allow attachment of persistent resources",
 "Effect": "Allow",
 "Principal": {"AWS": "arn:aws:iam::111122223333:role/EncryptionApp"},
 "Action": [
 "kms:ListGrants",
 "kms:CreateGrant",
 "kms:RevokeGrant"
],
 "Resource": "*",
 "Condition": {"Bool": {"kms:GrantIsForAWSResource": true}}
}

In the preceding policy statement, arn:aws:iam::111122223333:role/EncryptionApp refers to
the IAM role named EncryptionApp in AWS account 111122223333. Principals that can assume this role
are allowed to perform the actions listed in the policy statement. These actions, when combined with the
actions allowed in Example policy statement 3, are those necessary to delegate use of the CMK to most
AWS services that integrate with AWS KMS (p. 228), specifically the services that use grants (p. 115).
The Condition element ensures that the delegation is allowed only when the delegate is an AWS
service that integrates with AWS KMS and uses grants for authorization.

To learn all the different ways you can specify a principal in a key policy document, see Specifying a
Principal in the IAM User Guide.

120

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#Principal_specifying
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#Principal_specifying

AWS Key Management Service Developer Guide
Examining IAM Policies

To learn more about AWS KMS key policies, see Using Key Policies in AWS KMS (p. 50).

Examining IAM Policies
In addition to the key policy and grants, you can also use IAM policies in combination with a CMK's key
policy to allow access to a CMK. For more information about how IAM policies and key policies work
together, see Troubleshooting Key Access (p. 123).

To determine which principals currently have access to a CMK through IAM policies, you can use the
browser-based IAM Policy Simulator tool, or you can make requests to the IAM API.

Ways to examine IAM policies
• Examining IAM Policies with the IAM Policy Simulator (p. 121)
• Examining IAM Policies with the IAM API (p. 121)

Examining IAM Policies with the IAM Policy Simulator
The IAM Policy Simulator can help you learn which principals have access to a KMS CMK through an IAM
policy.

To use the IAM Policy Simulator to determine access to a KMS CMK

1. Sign in to the AWS Management Console and then open the IAM Policy Simulator at https://
policysim.aws.amazon.com/.

2. In the Users, Groups, and Roles pane, choose the user, group, or role whose policies you want to
simulate.

3. (Optional) Clear the check box next to any policies that you want to omit from the simulation. To
simulate all policies, leave all policies selected.

4. In the Policy Simulator pane, do the following:

a. For Select service, choose Key Management Service.
b. To simulate specific AWS KMS actions, for Select actions, choose the actions to simulate. To

simulate all AWS KMS actions, choose Select All.
5. (Optional) The Policy Simulator simulates access to all KMS CMKs by default. To simulate access to a

specific KMS CMK, choose Simulation Settingsand then type the Amazon Resource Name (ARN) of
the KMS CMK to simulate.

6. Choose Run Simulation.

You can view the results of the simulation in the Results section. Repeat steps 2 through 6 for every IAM
user, group, and role in the AWS account.

Examining IAM Policies with the IAM API
You can use the IAM API to examine IAM policies programmatically. The following steps provide a
general overview of how to do this:

1. For each AWS account listed as a principal in the CMK's key policy (that is, each root account listed in
this format: "Principal": {"AWS": "arn:aws:iam::111122223333:root"}), use the ListUsers
and ListRoles operations in the IAM API to retrieve a list of every IAM user and role in the account.

2. For each IAM user and role in the list, use the SimulatePrincipalPolicy operation in the IAM API,
passing in the following parameters:
• For PolicySourceArn, specify the Amazon Resource Name (ARN) of a user or role from your list.

You can specify only one PolicySourceArn for each SimulatePrincipalPolicy request, so
you must call this operation multiple times, once for each IAM user and role in your list.

121

https://policysim.aws.amazon.com/
https://policysim.aws.amazon.com/
https://policysim.aws.amazon.com/
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListUsers.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListRoles.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_SimulatePrincipalPolicy.html

AWS Key Management Service Developer Guide
Examining Grants

• For the ActionNames list, specify every AWS KMS API action to simulate. To simulate all AWS
KMS API actions, use kms:*. To test individual AWS KMS API actions, precede each API action with
"kms:", for example "kms:ListKeys". For a complete list of all AWS KMS API actions, see Actions in
the AWS Key Management Service API Reference.

• (Optional) To determine whether the IAM users or roles have access to specific KMS CMKs, use the
ResourceArns parameter to specify a list of the Amazon Resource Names (ARNs) of the CMKs. To
determine whether the IAM users or roles have access to any CMK, do not use the ResourceArns
parameter.

IAM responds to each SimulatePrincipalPolicy request with an evaluation decision: allowed,
explicitDeny, or implicitDeny. For each response that contains an evaluation decision of allowed,
the response includes the name of the specific AWS KMS API operation that is allowed. It also includes
the ARN of the CMK that was used in the evaluation, if any.

Examining Grants
Grants are advanced mechanisms for specifying permissions that you or an AWS service integrated
with AWS KMS can use to specify how and when a CMK can be used. Grants are attached to a CMK, and
each grant contains the principal who receives permission to use the CMK and a list of operations that
are allowed. Grants are an alternative to the key policy, and are useful for specific use cases. For more
information, see Using Grants (p. 115).

To get a list of grants for a CMK, use the AWS KMS ListGrants operation. You can examine the grants for
a CMK to determine who or what currently has access to use the CMK via those grants. For example, the
following is a JSON representation of a grant that was obtained from the list-grants command in the
AWS CLI.

{"Grants": [{
 "Operations": ["Decrypt"],
 "KeyId": "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "Name": "0d8aa621-43ef-4657-b29c-3752c41dc132",
 "RetiringPrincipal": "arn:aws:iam::123456789012:root",
 "GranteePrincipal": "arn:aws:sts::111122223333:assumed-role/aws:ec2-infrastructure/
i-5d476fab",
 "GrantId": "dc716f53c93acacf291b1540de3e5a232b76256c83b2ecb22cdefa26576a2d3e",
 "IssuingAccount": "arn:aws:iam::111122223333:root",
 "CreationDate": 1.444151834E9,
 "Constraints": {"EncryptionContextSubset": {"aws:ebs:id": "vol-5cccfb4e"}}
}]}

To find out who or what has access to use the CMK, look for the "GranteePrincipal" element. In the
preceding example, the grantee principal is an assumed role user that is associated with the EC2 instance
i-5d476fab. The EC2 infrastructure uses this role to attach the encrypted EBS volume vol-5cccfb4e to the
instance. In this case, the EC2 infrastructure role has permission to use the CMK because you previously
created an encrypted EBS volume that is protected by this CMK. You then attached the volume to an EC2
instance.

The following is another example of a JSON representation of a grant that was obtained from the list-
grants command in the AWS CLI. In the following example, the grantee principal is another AWS account.

{"Grants": [{
 "Operations": ["Encrypt"],
 "KeyId": "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "Name": "",
 "GranteePrincipal": "arn:aws:iam::444455556666:root",
 "GrantId": "f271e8328717f8bde5d03f4981f06a6b3fc18bcae2da12ac38bd9186e7925d11",
 "IssuingAccount": "arn:aws:iam::111122223333:root",
 "CreationDate": 1.444151269E9

122

https://docs.aws.amazon.com/kms/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ListGrants.html
https://docs.aws.amazon.com/cli/latest/reference/kms/list-grants.html
https://docs.aws.amazon.com/cli/latest/reference/kms/list-grants.html
https://docs.aws.amazon.com/cli/latest/reference/kms/list-grants.html

AWS Key Management Service Developer Guide
Troubleshooting Key Access

}]}

Troubleshooting Key Access
When authorizing access to a customer master key (CMK), AWS KMS evaluates the following:

• The key policy that is attached to the CMK. The key policy is always defined in the AWS account that
owns the CMK.

• All IAM policies that are attached to the IAM user or role making the request. IAM policies that govern
a principal's use of a CMK are always defined in the principal's AWS account.

• All grants that apply to the CMK.

AWS KMS evaluates the CMK's key policy (p. 119), IAM policies (p. 121), and grants (p. 122) together
to determine whether access to the CMK is allowed or denied. To do this, AWS KMS uses a process similar
to the one depicted in the following flowchart. The following flowchart provides a visual representation
of the policy evaluation process.

This flowchart is divided into two parts. The parts appear to be sequential, but they are typically
evaluated at the same time.

• Use authorization determines whether you are permitted to use a CMK based on its key policy, IAM
policies, and grants.

• Key trust determines whether you should trust a CMK that you are permitted to use. In general, you
trust the resources in your AWS account. But, you can also feel confident about using CMKs in a
different AWS account if a grant or IAM policy in your account allows you to use the CMK.

123

AWS Key Management Service Developer Guide
Troubleshooting Key Access

You can use this flowchart to discover why a caller was allowed or denied permission to use a CMK. You
can also use it to evaluate your policies and grants. For example, the flowchart shows that a caller can
be denied access by an explicit DENY statement, or by the absence of an explicit ALLOW statement, in the
key policy, IAM policy, or grant.

The flowchart can explain some common permission scenarios.

Permission Examples
• Example 1: User Is Denied Access to a CMK in Their AWS Account (p. 124)
• Example 2: User Assumes Role with Permission to Use a CMK in a Different AWS Account (p. 125)

Example 1: User Is Denied Access to a CMK in Their AWS Account
Alice is an IAM user in the 111122223333 AWS account. She was denied access to a CMK in same AWS
account. Why can't Alice use the CMK?

In this case, Alice is denied access to the CMK because there is no key policy, IAM policy, or grant that
gives her the required permissions. The CMK's key policy allows the AWS account to use IAM policies to
control access to the CMK, but no IAM policy gives Alice permission to use the CMK.

124

AWS Key Management Service Developer Guide
Troubleshooting Key Access

Consider the relevant policies for this example.

• The CMK that Alice wants to use has the default key policy (p. 51). This policy allows the AWS
account (p. 52) that owns the CMK to use IAM policies to control access to the CMK. This key policy
satisfies the Does the key policy ALLOW the callers account to use IAM policies to control access to the
key? condition in the flowchart.

{
 "Version" : "2012-10-17",
 "Id" : "key-test-1",
 "Statement" : [{
 "Sid" : "Delegate to IAM policies",
 "Effect" : "Allow",
 "Principal" : {
 "AWS" : "arn:aws:iam::111122223333:root"
 },
 "Action" : "kms:*",
 "Resource" : "*"
 }]
}

• However, no key policy, IAM policy, or grant gives Alice permission to use the CMK. Therefore, Alice is
denied permission to use the CMK.

Example 2: User Assumes Role with Permission to Use a CMK in
a Different AWS Account

Bob is a user in account 1 (111122223333). He is allowed to use a CMK in account 2 (444455556666) in
cryptographic operations. How is this possible?

Tip
When evaluating cross-account permissions, remember that the key policy is specified in the
CMK's account. The IAM policy is specified in the caller's account, even when the caller is in a
different account.

• The key policy for the CMK in account 2 allows account 2 to use IAM policies to control access to the
CMK.

• The key policy for the CMK in account 2 allows account 1 to use the CMK in cryptographic operations.
However, account 1 must use IAM policies to give its principals access to the CMK.

• An IAM policy in account 1 allows the ExampleRole role to use the CMK in account 2 for
cryptographic operations.

• Bob, a user in account 1, has permission to assume the ExampleRole role.

• Bob can trust this CMK, because even though it is not in his account, an IAM policy in his account gives
him explicit permission to use this CMK.

125

AWS Key Management Service Developer Guide
Troubleshooting Key Access

Consider the policies that let Bob, a user in account 1, use the CMK in account 2.

• The key policy for the CMK allows account 2 (444455556666, the account that owns the CMK) to use
IAM policies to control access to the CMK. This key policy also allows account 1 (111122223333) to
use the CMK in cryptographic operations (specified in the Action element of the policy statement).
However, no one in account 1 can use the CMK in account 2 until account 1 defines IAM policies that
give the principals access to the CMK.

In the flowchart, this key policy in account 2 satisfies the Does the key policy ALLOW the caller's account
to use IAM policies to control access to the key? condition.

{
 "Id": "key-policy-acct-2",
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Permission to use IAM policies",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::444455556666:root"
 },

126

AWS Key Management Service Developer Guide
Troubleshooting Key Access

 "Action": "kms:*",
 "Resource": "*"
 },
 {
 "Sid": "Allow account 1 to use this CMK",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:root"
 },
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncryptFrom",
 "kms:ReEncryptTo",
 "kms:GenerateDataKey",
 "kms:GenerateDataKeyWithoutPlaintext",
 "kms:DescribeKey"
],
 "Resource": "*"
 }
]
}

• An IAM policy in the caller's AWS account (account 1, 111122223333) gives the ExampleRole
role in account 1 permission to perform cryptographic operations using the CMK in account 2
(444455556666). The Action element gives the role the same permissions that the key policy in
account 2 gave to account 1.

Cross-account IAM policies like this one are effective only when the key policy for the CMK in account
2 gives account 1 permission to use the CMK. Also, account 1 can only give its principals permission to
perform the actions that the key policy gave to the account.

In the flowchart, this satisfies the Does an IAM policy allow the caller to perform this action? condition.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Principal": { "arn:aws:iam::111122223333:role/ExampleRole" }
 "Effect": "Allow",
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncryptFrom",
 "kms:ReEncryptTo",
 "kms:GenerateDataKey",
 "kms:GenerateDataKeyWithoutPlaintext",
 "kms:DescribeKey"
],
 "Resource": [
 "arn:aws:kms:us-
west-2:444455556666:key/1234abcd-12ab-34cd-56ef-1234567890ab"
]
 }
]
}

• The last required element is the definition of the ExampleRole role in account 1. The
AssumeRolePolicyDocument in the role allows Bob to assume the ExampleRole role.

{
 "Role": {
 "Arn": "arn:aws:iam::111122223333:role/ExampleRole",

127

AWS Key Management Service Developer Guide
Troubleshooting Key Access

 "CreateDate": "2019-05-16T00:09:25Z",
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": {
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:user/bob"
 },
 "Effect": "Allow",
 "Action": "sts:AssumeRole"
 }
 },
 "Path": "/",
 "RoleName": "ExampleRole",
 "RoleId": "AROA4KJY2TU23Y7NK62MV"
 }
}

128

AWS Key Management Service Developer Guide

Using Symmetric and Asymmetric
Keys

AWS KMS protects the customer master keys (p. 2) (CMKs) that you use to protect your data and data
keys. Your secret keys are generated and used only in hardware security modules designed so that no
one, including AWS employees, can access the plaintext key material.

You can create and manage the CMKs in your AWS account, including setting the key policies (p. 50), IAM
policies (p. 67), and grants (p. 115) that control access to your CMKs, enabling and disabling the CMKs,
creating tags and aliases, and deleting the CMKs. You can use your CMKs to protect your resources in
AWS services that are integrated with AWS KMS (p. 228). And, you can audit all operations that use or
manage your CMKs in AWS CloudTrail logs (p. 293).

AWS KMS supports symmetric and asymmetric CMKs.

• Symmetric CMK (p. 130): Represents a single 256-bit secret encryption key that never leaves AWS
KMS unencrypted. To use your symmetric CMK, you must call AWS KMS.

• Asymmetric CMK (p. 130): Represents a mathematically related public key and private key pair that

you can use for encryption and decryption or signing and verification, but not both. The private key
never leaves AWS KMS unencrypted. You can use the public key within AWS KMS by calling the AWS
KMS API operations, or download the public key and use it outside of AWS KMS.

Note
Asymmetric CMKs and asymmetric data key pairs are supported by AWS KMS only in the
following AWS Regions: US East (N. Virginia), US West (Oregon), Asia Pacific (Sydney), Asia
Pacific (Tokyo), and Europe (Ireland).

AWS KMS also provides symmetric data keys (p. 4) and asymmetric data key pairs (p. 6) that are designed
to be used for client-side cryptography outside of AWS KMS. The symmetric data key and the private key
in an asymmetric data key pair are protected by a symmetric CMK in AWS KMS.

• Symmetric data key — A symmetric encryption key that you can use to encrypt data outside of AWS
KMS. This key is protected by a symmetric CMK in AWS KMS.

• Asymmetric data key pair — An RSA or elliptic curve (ECC) key pair that consists of a public key and a

private key. You can use your data key pair outside of AWS KMS to encrypt and decrypt data, or sign
messages and verify signatures. The private key is protected by a symmetric CMK in AWS KMS.

For information about how to create and use data keys and data key pairs, see Data Keys (p. 4) and
Data Key Pairs (p. 6). To learn how to limit the types of data key pairs that principals in your account are
permitted to generate, use the kms:DataKeyPairSpec (p. 93) condition key.

This topic explains how symmetric and asymmetric CMKs work, how they differ, and how to decide which
type of CMK you need to protect your data. It also explains how symmetric data keys and asymmetric
data key pairs work and how to use them outside of AWS KMS.

Learn more

• For a table that compares the AWS KMS API operations that apply to each type of CMK, see the section
called “Comparing Symmetric and Asymmetric CMKs” (p. 138).

129

AWS Key Management Service Developer Guide
About Symmetric and Asymmetric CMKs

• To find out whether a CMK is symmetric or asymmetric, see Identifying Symmetric and Asymmetric
CMKs (p. 33).

• To examine the difference in the default key policy that the AWS KMS console sets for symmetric and
asymmetric CMKs, see the section called “Allows Key Users to Use the CMK with AWS Services” (p. 57).

• To specify the key specs, key usage, encryption algorithms, and signing algorithms that principals in
your account can use for CMKs, see the section called “AWS KMS Condition Keys” (p. 88).

• To learn about the request quotas that apply to different types of CMKs, see the section called
“Request Quotas” (p. 355).

• To learn how to sign messages and verify signatures with asymmetric CMKs, see Digital signing with
the new asymmetric keys feature of AWS KMS in the AWS Security Blog.

Topics
• About Symmetric and Asymmetric CMKs (p. 130)
• How to Choose Your CMK Configuration (p. 131)
• Viewing the Cryptographic Configuration of CMKs (p. 137)
• Comparing Symmetric and Asymmetric CMKs (p. 138)

About Symmetric and Asymmetric CMKs
In AWS KMS, you can create symmetric and asymmetric CMKs.

Symmetric Customer Master Keys
When you create a customer master key (CMK) in KMS, by default, you get a symmetric CMK.

In AWS KMS, a symmetric CMK represents a 256-bit encryption key that never leaves AWS KMS
unencrypted. To use a symmetric CMK, you must call AWS KMS. Symmetric keys are used in symmetric
encryption, where the same key is used for encryption and decryption.

Unless your task explicitly requires asymmetric encryption, symmetric CMKs, which never leave AWS KMS
unencrypted, are a good choice. For information about the cryptographic configuration or key spec for
symmetric CMKs, see SYMMETRIC_DEFAULT Key Spec (p. 134). For help creating a symmetric CMK, see
Creating Symmetric CMKs (p. 17).

AWS services that are integrated with AWS KMS use symmetric CMKs to protect your data. These services
do not support asymmetric CMKs. For help determining whether a CMK is symmetric or asymmetric, see
Identifying Symmetric and Asymmetric CMKs (p. 33).

You can use a symmetric CMK in AWS KMS to encrypt, decrypt, and re-encrypt data, generate data keys
and data key pairs, and generate random byte strings. You can import your own key material (p. 147)
into a symmetric CMK and create symmetric CMKs in custom key stores (p. 172). For a table comparing
the operations that you can perform on symmetric and asymmetric CMKs, see Comparing Symmetric and
Asymmetric CMKs (p. 138).

Asymmetric Customer Master Keys
Note
Asymmetric CMKs and asymmetric data key pairs are supported by AWS KMS only in the
following AWS Regions: US East (N. Virginia), US West (Oregon), Asia Pacific (Sydney), Asia
Pacific (Tokyo), and Europe (Ireland).

You can create an asymmetric CMK in AWS KMS. An asymmetric CMK represents a mathematically related
public key and private key pair. You can give the public key to anyone, even if they're not trusted, but the
private key must be kept secret.

130

http://aws.amazon.com/blogs/security/digital-signing-asymmetric-keys-aws-kms/
http://aws.amazon.com/blogs/security/digital-signing-asymmetric-keys-aws-kms/
https://aws.amazon.com/kms/features/#AWS_Service_Integration

AWS Key Management Service Developer Guide
How to Choose Your CMK Configuration

In an asymmetric CMK, the private key is created in AWS KMS and never leaves AWS KMS unencrypted.
To use the private key, you must call AWS KMS. You can use the public key within AWS KMS by calling the
AWS KMS API operations. Or, you can download the public key (p. 43) and use it outside of AWS KMS.

If your use case requires encryption outside of AWS by users who cannot call AWS KMS, asymmetric
CMKs are a good choice. However, if you are creating a CMK to encrypt the data that you store or
manage in an AWS service, use a symmetric CMK. AWS services that integrate with AWS KMS do not
support asymmetric CMKs.

AWS KMS supports two types of asymmetric CMKs.

• RSA CMKs: A CMK with an RSA key pair for encryption and decryption or signing and verification (but
not both). KMS supports several key lengths for different security requirements.

• Elliptic Curve (ECC) CMKs: A CMK with an elliptic curve key pair for signing and verification. KMS
supports several commonly-used curves.

For technical details about the encryption and signing algorithms that AWS KMS supports for RSA CMKs,
see RSA Key Specs (p. 134). For technical details about the signing algorithms that AWS KMS supports
for ECC CMKs, see Elliptic Curve Key Specs (p. 136).

For a table comparing the operations that you can perform on symmetric and asymmetric CMKs,
see Comparing Symmetric and Asymmetric CMKs (p. 138). For help determining whether a CMK is
symmetric or asymmetric, see Identifying Symmetric and Asymmetric CMKs (p. 33).

How to Choose Your CMK Configuration
The type of CMK that you create depends largely on how your plan to use the CMK, your security
requirements, and your authorization requirements. When creating your CMK, remember that the
cryptographic configuration of the CMK, including its key spec and key usage are established when you
create the CMK and cannot be changed. For help with creating symmetric and asymmetric CMK, see the
section called “Creating Keys” (p. 17).

AWS KMS supports two CMK key types: Symmetric and Asymmetric. Each key type is associated
particular key usage (p. 132) and key spec (p. 133) options.

Use the following guidance to determine which type of CMK you need based on your use case.

Encrypt and decrypt data

Use a symmetric CMK (p. 130) for most use cases that require encrypting and decrypting data. The
symmetric encryption algorithm that AWS KMS uses is fast, efficient, and assures the confidentiality
and authenticity of data. It supports authenticated encryption with additional authenticated data
(AAD), defined as an encryption context (p. 12). This type of CMK requires both the sender and
recipient of encrypted data to have valid AWS credentials to call AWS KMS.

If your use case requires encryption outside of AWS by users who cannot call AWS KMS, asymmetric
CMKs (p. 130) are a good choice. You can distribute the public portion of the asymmetric CMK to
allow these users to encrypt data. And your applications that need to decrypt that data can use the
private portion of the asymmetric CMK within AWS KMS.

Sign messages and verify signatures

To sign messages and verify signatures, you must use an asymmetric CMK (p. 130). You can use a
CMK with a key spec (p. 133) that represents an RSA key pair or an elliptic curve (ECC) key pair. The
key spec you choose is determined by the signing algorithm that you want to use. In some cases, the
users who will verify signatures are outside of AWS and can’t call the Verify operation. In that case,
choose a key spec (p. 133) associated with a signing algorithm that these users can support in their
local applications.

131

url-kms-api;API_Verify.html

AWS Key Management Service Developer Guide
Selecting the Key Usage

Perform public key encryption

To perform public key encryption, you must use an asymmetric CMK (p. 130) with an RSA key
spec (p. 135). Elliptic curve (ECC) key specs (p. 136) cannot be used for public key encryption. To
encrypt data in AWS KMS with the public key of an RSA CMK, use the Encrypt operation. You can
also download the public key (p. 43) and share it with the parties that need to encrypt data outside
of AWS KMS.

When you download the public key of an asymmetric CMK, you can use it outside of AWS KMS. But
it is no longer subject to the security controls that protect the CMK in AWS KMS. For example, you
cannot use KMS key policies or grants to control use of the public key. Nor can you control whether
the key is used only for encryption and decryption using the RSA encryption algorithms that AWS
KMS supports. For more details, see Special Considerations for Downloading Public Keys (p. 43).

To decrypt data that was encrypted with the public key outside of AWS KMS, call the Decrypt
operation. The Decrypt operation fails if the data was encrypted under a public key from a
CMK with a key usage (p. 132) of SIGN_VERIFY. It will also fail if it was encrypted by using an
algorithm that KMS does not support for RSA CMKs.

To avoid these errors, anyone using a public key outside of AWS KMS must store the key
configuration. The AWS KMS console and the GetPublicKey response provide the information that
you must include when you share the public key.

Use with Integrated AWS Services

To create a CMK for use with an AWS service that is integrated with AWS KMS (p. 228), consult
the documentation for the service. All AWS services that encrypt data on your behalf require a
symmetric CMK (p. 130).

In addition to these considerations, CMKs with different key specs have different prices and different
request quotas. For information about AWS KMS pricing, see AWS Key Management Service Pricing. For
information about request quotas, see Request Quotas (p. 355).

Selecting the Key Usage
The key usage of a CMK determines whether the CMK is used for encryption and decryption -or- signing
and verification. You cannot choose both. Using a CMK for more than one type of operations makes the
product of both operations more vulnerable to attack.

As shown in the following table, symmetric CMKs can be used only for encryption and decryption. Elliptic
curve (ECC) CMKs can be used only for signing and verification. Key usage decisions are really made only
for RSA CMKs.

Valid key usage for CMK types

CMK type Encrypt and decrypt Sign and Verify

Symmetric CMKs

Asymmetric CMKs with RSA key
pairs

Asymmetric CMKs with ECC key
pairs

In the AWS KMS console, you first choose the key type (symmetric or asymmetric), and then, for
asymmetric CMKs, the key usage. If you select a symmetric key type, the key usage options do not

132

url-kms-api;API_Encrypt.html
url-kms-api;API_Decrypt.html
url-kms-api;API_GetPublicKey.html
https://aws.amazon.com/kms/pricing/

AWS Key Management Service Developer Guide
Selecting the Key Spec

appear, because symmetric CMKs only support encryption and decryption. The key usage that you
choose determines which key specs (p. 133) are displayed.

To choose a key usage in the AWS KMS console:

• For CMKs with elliptic curve (ECC) key material, choose Sign and verify.
• For CMKs with RSA key material, choose Encrypt and decrypt or Sign and verify.

To determine the key usage that principals in your account are permitted to use for CMKs, use the
kms:CustomerMasterKeyUsage (p. 92) condition key.

Selecting the Key Spec
When you create an asymmetric CMK, you select its key spec. The key spec, which is a property of every
customer master key (CMK), represents the cryptographic configuration of your CMK. You choose the key
spec when you create the CMK, and you cannot change it. If you've selected the wrong key spec, delete
the CMK (p. 160), and create a new one.

Note
In AWS KMS API operations, the key spec for CMKs is known as the CustomerMasterKeySpec.
This distinguishes it from the key spec for data keys (KeySpec) and data key pairs
(KeyPairSpec), and the key spec used when wrapping key material for import
(WrappingKeySpec). Each key spec type has different values.

The key spec determines whether the CMK is symmetric or asymmetric, the type of key material in the
CMK, and the encryption algorithms or signing algorithms that AWS KMS supports for the CMK. The key
spec that you choose is typically determined by your use case and regulatory requirements.

To determine the key specs that principals in your account are permitted to use for CMKs, use the
kms:CustomerMasterKeySpec (p. 91) condition key.

AWS KMS supports the following key specs for CMKs:

• Symmetric CMKs (p. 134) (default; encryption and decryption)
• SYMMETRIC_DEFAULT

• RSA key specs (p. 134) (encryption and decryption -or- signing and verification)
• RSA_2048
• RSA_3072
• RSA_4096

• Elliptic curve key specs (p. 136)
• Asymmetric NIST-recommended elliptic curve key pairs (signing and verification)

• ECC_NIST_P256 (secp256r1)
• ECC_NIST_P384 (secp384r1)
• ECC_NIST_P521 (secp521r1)

• Other asymmetric elliptic curve key pairs (signing and verification)
• ECC_SECG_P256K1 (secp256k1), commonly used for cryptocurrency.

Topics

The following topics provide technical information about the key specs.

• SYMMETRIC_DEFAULT Key Spec (p. 134)
• RSA Key Specs (p. 134)
• Elliptic Curve Key Specs (p. 136)

133

http://tools.ietf.org/html/rfc5753/
https://en.bitcoin.it/wiki/Secp256k1

AWS Key Management Service Developer Guide
Selecting the Key Spec

SYMMETRIC_DEFAULT Key Spec
The default key spec, SYMMETRIC_DEFAULT, is the key spec for symmetric CMKs. When you select the
Symmetric key type in the AWS KMS console, it selects the SYMMETRIC_DEFAULT key spec. In the
CreateKey operation, if you don't specify a CustomerMasterKeySpec value, SYMMETRIC_DEFAULT is
selected. If you don't have a reason to use a different key spec, SYMMETRIC_DEFAULT is a good choice.

The encryption algorithm for symmetric CMKs is also known as SYMMETRIC_DEFAULT. Currently, this
represents a symmetric algorithm based on Advanced Encryption Standard (AES) in Galois Counter Mode
(GCM) with 256-bit keys, an industry standard for secure encryption. The ciphertext that this algorithm
generates supports additional authenticated data (AAD), such as an encryption context (p. 12), and
GCM provides an additional integrity check on the ciphertext. For technical details, see the AWS Key
Management Service Cryptographic Details whitepaper.

Data encrypted under AES-256-GCM is protected now and in the future. Cryptographers consider this
algorithm to be quantum resistant. Theoretical future, large-scale quantum computing attacks on
ciphertexts created under 256-bit AES-GCM keys reduce the effective security of the key to 128 bits. But,
this security level is sufficient to make brute force attacks on AWS KMS ciphertexts infeasible.

You can use a symmetric CMK in AWS KMS to encrypt, decrypt, and re-encrypt data, and generate
data keys and data key pairs. AWS services that are integrated with AWS KMS generally use symmetric
CMKs to encrypt your data at rest. You can import your own key material (p. 147) into a symmetric
CMK and create symmetric CMKs in custom key stores (p. 172). For a table comparing the operations
that you can perform on symmetric and asymmetric CMKs, see Comparing Symmetric and Asymmetric
CMKs (p. 138).

RSA Key Specs
When you use an RSA key spec, AWS KMS creates an asymmetric CMK with an RSA key pair. The private
key never leaves AWS KMS unencrypted. You can use the public key within AWS KMS, or download the
public key for use outside of AWS KMS.

Warning
When you encrypt data outside of AWS KMS, if you use a public key from a CMK is configured
for signing and verification, or an encryption algorithm that is not supported by the CMK, or
use a public key from a CMK that has been deleted from AWS KMS, you cannot decrypt the
ciphertext. The data is unrecoverable.

In AWS KMS, you can use asymmetric CMKs with RSA key pairs for encryption and decryption, or signing
and verification, but not both. This property, known as key usage (p. 132), is determined separately
from the key spec, but you should make that decision before you select a key spec.

AWS KMS supports the following RSA key specs for encryption and decryption or signing and
verification:

• RSA_2048

• RSA_3072

• RSA_4096

RSA key specs differ by the length of the RSA key in bits. The RSA key spec that you choose might be
determined by your security standards or the requirements of your task. In general, use the largest key
that is practical and affordable for your task. CMKs with different RSA key specs are priced differently
and are subject to different request quotas. For information about AWS KMS pricing, see AWS Key
Management Service Pricing. For information about request quotas, see Request Quotas (p. 355).

134

https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateKey.html
https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
https://d0.awsstatic.com/whitepapers/KMS-Cryptographic-Details.pdf
https://d0.awsstatic.com/whitepapers/KMS-Cryptographic-Details.pdf
https://www.etsi.org/images/files/ETSIWhitePapers/QuantumSafeWhitepaper.pdf
https://aws.amazon.com/kms/pricing/
https://aws.amazon.com/kms/pricing/

AWS Key Management Service Developer Guide
Selecting the Key Spec

RSA Key Specs For Encryption and Decryption

When an RSA asymmetric CMK is used for encryption and decryption, you encrypt with the public
key and decrypt with the private key. When you call the Encrypt operation in AWS KMS for an RSA
CMK, AWS KMS uses the public key in the RSA key pair and the encryption algorithm you specify to
encrypt your data. To decrypt the ciphertext, call the Decrypt operation and specify the same CMK and
encryption algorithm. AWS KMS then uses the private key in the RSA key pair to decrypt your data.

You can also download the public key and use it to encrypt data outside of AWS KMS. Be sure to use an
encryption algorithm that AWS KMS supports for RSA CMKs. To decrypt the ciphertext, call the Decrypt
function with the same CMK and encryption algorithm.

AWS KMS supports two encryption algorithms for CMKs with RSA key specs. These algorithms, which are
defined in PKCS #1 v2.2, differ in the hash function they use internally. In AWS KMS, the RSAES_OAEP
algorithms always use the same hash function for both hashing purposes and for the mask generation
function (MGF1). You are required to specify an encryption algorithm when you call the Encrypt and
Decrypt operations. You can choose a different algorithm for each request.

Supported encryption algorithms for RSA key specs

Encryption algorithm Algorithm description

RSAES_OAEP_SHA_1 PKCS #1 v2.2, Section 7.1. RSA encryption with
OAEP Padding using SHA-1 for both the hash and
in the MGF1 mask generation function along with
an empty label.

RSAES_OAEP_SHA_256 PKCS #1, Section 7.1. RSA encryption with OAEP
Padding using SHA-256 for both the hash and in
the MGF1 mask generation function along with an
empty label.

You cannot configure a CMK to use a particular encryption algorithm. However, you can use the
kms:EncryptionAlgorithm (p. 94) policy condition to specify the encryption algorithms that principals are
allowed to use with the CMK.

To get the encryption algorithms for a CMK, view the cryptographic configuration (p. 25) of the CMK
in the AWS KMS console or use the DescribeKey operation. AWS KMS also provides the key spec and
encryption algorithms when you download your public key, either in the AWS KMS console or by using
the GetPublicKey operation.

You might choose an RSA key spec based on the length of the plaintext data that you can encrypt
in each request. The following table shows the maximum size, in bytes, of the plaintext that you can
encrypt in a single call to the Encrypt operation. The values differ with the key spec and encryption
algorithm. To compare, you can use a symmetric CMK to encrypt up to 4096 bytes at one time.

To compute the maximum plaintext length in bytes for these algorithms, use the following formula:
(key_size_in_bits / 8) - (2 * hash_length_in_bits/8) - 2. For example, for RSA_2048 with
SHA-256, the maximum plaintext size in bytes is (2048/8) - (2 * 256/8) -2 = 190.

Maximum plaintext size (in bytes) in an Encrypt operation

 Encryption algorithm

RSA_2048 214 190

RSA_3072 342 318

RSA_4096 470 446

135

https://tools.ietf.org/html/rfc8017
https://tools.ietf.org/html/rfc8017#appendix-B.2
https://tools.ietf.org/html/rfc8017#appendix-B.2
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html

AWS Key Management Service Developer Guide
Selecting the Key Spec

RSA Key Specs For Signing and Verification

When an RSA asymmetric CMK is used for signing and verification, you generate the signature for a
message with the private key and verify the signature with the public key.

When you call the Sign operation in AWS KMS for an asymmetric CMK, AWS KMS uses the private key in
the RSA key pair, the message, and the signing algorithm you specify, to generate a signature. To verify
the signature, call the Verify operation. Specify the signature, plus the same CMK, message, and signing
algorithm. AWS KMS then uses the public key in the RSA key pair to verify the signature. You can also
download the public key and use it to verify the signature outside of AWS KMS.

AWS KMS supports the following signing algorithms for CMKs with RSA key spec. You are required to
specify an signing algorithm when you call the Sign and Verify operations. You can choose a different
algorithm for each request.

Supported signing algorithms for RSA key specs

Signing algorithm Algorithm description

RSASSA_PKCS1_V1_5_SHA_256 PKCS #1 v2.2, Section 8.2, RSA signature with
PKCS #1v1.5 Padding and SHA-256

RSASSA_PKCS1_V1_5_SHA_384 PKCS #1 v2.2, Section 8.2, RSA signature with
PKCS #1v1.5 Padding and SHA-384

RSASSA_PKCS1_V1_5_SHA_512 PKCS #1 v2.2, Section 8.2, RSA signature with
PKCS #1v1.5 Padding and SHA-512

RSASSA_PSS_SHA_256 PKCS #1 v2.2, Section 8.1, RSA signature with PSS
padding using SHA-256 for both the message
digest and the MGF1 mask generation function
along with a 256-bit salt

RSASSA_PSS_SHA_384 PKCS #1 v2.2, Section 8.1, RSA signature with PSS
padding using SHA-384 for both the message
digest and the MGF1 mask generation function
along with a 384-bit salt

RSASSA_PSS_SHA_512 PKCS #1 v2.2, Section 8.1, RSA signature with PSS
padding using SHA-512 for both the message
digest and the MGF1 mask generation function
along with a 512-bit salt

You cannot configure a CMK to use particular signing algorithms. However, you can use the
kms:SigningAlgorithm (p. 109) policy condition to specify the signing algorithms that principals are
allowed to use with the CMK.

To get the signing algorithms for a CMK, view the cryptographic configuration (p. 25) of the CMK in
the AWS KMS console or by using the DescribeKey operation. AWS KMS also provides the key spec and
signing algorithms when you download your public key, either in the AWS KMS console or by using the
GetPublicKey operation.

Elliptic Curve Key Specs

When you use an elliptic curve (ECC) key spec, AWS KMS creates an asymmetric CMK with an ECC
key pair for signing and verification. The private key that generates signature never leaves AWS KMS
unencrypted. You can use the public key to verify signatures within AWS KMS, or download the public
key (p. 152) for use outside of AWS KMS.

136

https://docs.aws.amazon.com/kms/latest/APIReference/API_Verify.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Sign.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Verify.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Verify.html

AWS Key Management Service Developer Guide
Viewing the Cryptographic Configuration of CMKs

AWS KMS supports the following ECC key specs for asymmetric CMKs.

• Asymmetric NIST-recommended elliptic curve key pairs (signing and verification)

• ECC_NIST_P256 (secp256r1)

• ECC_NIST_P384 (secp384r1)

• ECC_NIST_P521 (secp521r1)

• Other asymmetric elliptic curve key pairs (signing and verification)

• ECC_SECG_P256K1 (secp256k1), commonly used for cryptocurrencies.

The ECC key spec that you choose might be determined by your security standards or the requirements
of your task. In general, use the curve with the most points that is practical and affordable for your task.

If you're creating an asymmetric CMK to use with cryptocurrencies, use the ECC_SECG_P256K1
key spec. You can also use this key spec for other purposes, but it is required for Bitcoin, and other
cryptocurrencies.

CMKs with different ECC key specs are priced differently and are subject to different request quotas. For
information about AWS KMS pricing, see AWS Key Management Service Pricing. For information about
request quotas, see Request Quotas (p. 355).

The following table shows the signing algorithms that AWS KMS supports for each of the ECC key
specs. You cannot configure a CMK to use particular signing algorithms. However, you can use the
kms:SigningAlgorithm (p. 109) policy condition to specify the signing algorithms that principals are
allowed to use with the CMK.

Supported signing algorithms for ECC key specs

Key spec Signing algorithm Algorithm description

ECC_NIST_P256 ECDSA_SHA_256 NIST FIPS 186-4, Section 6.4,
ECDSA signature using the
curve specified by the key and
SHA-256 for the message digest.

ECC_NIST_P384 ECDSA_SHA_384 NIST FIPS 186-4, Section 6.4,
ECDSA signature using the
curve specified by the key and
SHA-384 for the message digest.

ECC_NIST_P521 ECDSA_SHA_512 NIST FIPS 186-4, Section 6.4,
ECDSA signature using the
curve specified by the key and
SHA-512 for the message digest.

ECC_SECG_P256K1 ECDSA_SHA_256 NIST FIPS 186-4, Section 6.4,
ECDSA signature using the
curve specified by the key and
SHA-256 for the message digest.

Viewing the Cryptographic Configuration of CMKs
After you create your CMK, you can view its cryptographic configuration. You cannot change the
configuration of a CMK after it is created. If you prefer a different configuration, delete the CMK and
create it again.

137

https://en.bitcoin.it/wiki/Secp256k1
https://aws.amazon.com/kms/pricing/

AWS Key Management Service Developer Guide
Comparing Symmetric and Asymmetric CMKs

You can find the cryptographic configuration of your CMKs, include the key spec, key usage, and
supported encryption or signing algorithms, in the AWS KMS console or by using the AWS KMS API. For
details, see Viewing Keys (p. 22).

In the AWS KMS console, the details page for each CMK includes a Cryptographic Configuration section
that displays cryptographic details about your CMKs. For example, the following image shows the
Cryptographic Configuration section for an RSA CMK used for signing and verification.

In the AWS KMS API, use the DescribeKey operation. The KeyMetadata structure in the response
includes the cryptographic configuration of the CMK. For example, DescribeKey returns the following
response for an RSA CMK used for signing and verification.

{
 "KeyMetadata": {
 "AWSAccountId": "111122223333",
 "KeyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "Arn": "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "CreationDate": 1571767572.317,
 "Enabled": false,
 "Description": "",
 "KeyUsage": "SIGN_VERIFY",
 "KeyState": "Disabled",
 "Origin": "AWS_KMS",
 "KeyManager": "CUSTOMER",
 "CustomerMasterKeySpec": "RSA_2048",
 "SigningAlgorithms": [
 "RSASSA_PKCS1_V1_5_SHA_256",
 "RSASSA_PKCS1_V1_5_SHA_384",
 "RSASSA_PKCS1_V1_5_SHA_512",
 "RSASSA_PSS_SHA_256",
 "RSASSA_PSS_SHA_384",
 "RSASSA_PSS_SHA_512"
]
 }
}

Comparing Symmetric and Asymmetric CMKs
You can create and manage symmetric and asymmetric CMKs by using the AWS KMS console and the
AWS KMS API. However, AWS KMS supports different features for CMKs of different types.

For example, you can only use symmetric CMKs to generate symmetric data keys and asymmetric data
key pairs. Also, importing key material (p. 147) and automatic key rotation (p. 142) are supported
only for symmetric CMKs, and you can create only symmetric CMKs in a custom key store (p. 172).

The following table lists the AWS KMS operations that you can use to create and manage CMKs of each
type. If you use the operation on a CMK that doesn't not support it, the operation fails.

138

https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyPairs.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyPairs.html

AWS Key Management Service Developer Guide
Comparing Symmetric and Asymmetric CMKs

Note

AWS KMS Operations With Symmetric and Asymmetric CMKs

AWS KMS API Operation Symmetric
CMKs

Asymmetric
CMKs
(ENCRYPT_DECRYPT)

Asymmetric CMKs
(SIGN_VERIFY)

CancelKeyDeletion

CreateAlias

CreateGrant

CreateKey

- With no key material (Origin =
EXTERNAL)

- In a custom key store (Origin =
AWS_CLOUSDHSM)

Decrypt

DeleteAlias

DeleteImportedKeyMaterial

DescribeKey

DisableKey

DisableKeyRotation

EnableKey

EnableKeyRotation

Encrypt

GenerateDataKey

GenerateDataKeyPair

139

https://docs.aws.amazon.com/kms/latest/APIReference/API_CancelKeyDeletion.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateAlias.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateGrant.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeleteAlias.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeleteImportedKeyMaterial.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DisableKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DisableKeyRotation.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_EnableKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_EnableKeyRotation.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyPair.html

AWS Key Management Service Developer Guide
Comparing Symmetric and Asymmetric CMKs

AWS KMS API Operation Symmetric
CMKs

Asymmetric
CMKs
(ENCRYPT_DECRYPT)

Asymmetric CMKs
(SIGN_VERIFY)

GenerateDataKeyPairWithoutPlaintext

GenerateDataKeyWithoutPlaintext

GetKeyPolicy

GetKeyRotationStatus

(KeyRotationEnabled
will always be
false.)

(KeyRotationEnabled will
always be false.)

GetParametersForImport

GetPublicKey

ImportKeyMaterial

ListAliases

ListGrants

ListKeyPolicies

ListResourceTags

ListRetirableGrants

PutKeyPolicy

ReEncrypt

RetireGrant

RevokeGrant

140

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyPairWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetKeyPolicy.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetKeyRotationStatus.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetParametersForImport.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ImportKeyMaterial.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ListAliases.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ListGrants.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ListKeyPolicies.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ListResourceTags.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ListRetirableGrants.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_PutKeyPolicy.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_RetireGrant.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_RevokeGrant.html

AWS Key Management Service Developer Guide
Comparing Symmetric and Asymmetric CMKs

AWS KMS API Operation Symmetric
CMKs

Asymmetric
CMKs
(ENCRYPT_DECRYPT)

Asymmetric CMKs
(SIGN_VERIFY)

ScheduleKeyDeletion

Sign

TagResource

UntagResource

UpdateAlias

The current CMK and the
new CMK must be the same
type (both symmetric or
both asymmetric) and they
must have the same key
usage (ENCRYPT_DECRYPT or
SIGN_VERIFY).

UpdateKeyDescription

Verify

141

https://docs.aws.amazon.com/kms/latest/APIReference/API_ScheduleKeyDeletion.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Sign.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_TagResource.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_UntagResource.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_UpdateAlias.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_UpdateKeyDescription.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Verify.html

AWS Key Management Service Developer Guide

Rotating Customer Master Keys
Cryptographic best practices discourage extensive reuse of encryption keys. To create new cryptographic
material for your AWS Key Management Service (AWS KMS) customer master keys (CMKs), you can
create new CMKs, and then change your applications or aliases to use the new CMKs. Or, you can enable
automatic key rotation for an existing CMK.

When you enable automatic key rotation for a CMK, AWS KMS generates new cryptographic material for
the CMK every year. AWS KMS also saves the CMK's older cryptographic material in perpetuity so it can
be used to decrypt data that it encrypted. AWS KMS does not delete any rotated key material until you
delete the CMK (p. 160).

Key rotation changes only the CMK's backing key, which is the cryptographic material that is used in
encryption operations. The CMK is the same logical resource, regardless of whether or how many times
its backing key changes. The properties of the CMK do not change, as shown in the following image.

Automatic key rotation has the following benefits:

• The properties of the CMK, including its key ID, key ARN, region, policies, and permissions, do not
change when the key is rotated.

• You do not need to change applications or aliases that refer to the CMK ID or ARN.

• After you enable key rotation, AWS KMS rotates the CMK automatically every year. You don't need to
remember or schedule the update.

However, automatic key rotation has no effect on the data that the CMK protects. It does not rotate the
data keys that the CMK generated or re-encrypt any data protected by the CMK, and it will not mitigate
the effect of a compromised data key.

You might decide to create a new CMK and use it in place of the original CMK. This has the same
effect as rotating the key material in an existing CMK, so it's often thought of as manually rotating the
key (p. 145). Manual rotation is a good choice when you want to control the key rotation schedule. It
also provides a way to rotate CMKs that are not eligible for automatic key rotation, including asymmetric
CMKs (p. 129), CMKs in custom key stores (p. 172), and CMKs with imported key material (p. 142).

More Information About Key Rotation

142

AWS Key Management Service Developer Guide
How Automatic Key Rotation Works

Rotating customer managed CMKs might result in extra monthly charges. For details, see AWS Key
Management Service Pricing. For more detailed information about backing keys and rotation, see the
KMS Cryptographic Details whitepaper.

Topics
• How Automatic Key Rotation Works (p. 143)

• How to Enable and Disable Automatic Key Rotation (p. 144)

• Rotating Keys Manually (p. 145)

How Automatic Key Rotation Works
Key rotation in AWS KMS is a cryptographic best practice that is designed to be transparent and easy to
use.

• Backing key management. AWS KMS retains all backing keys for a CMK, even if key rotation is
disabled. The backing keys are deleted only when the CMK is deleted. When you use a CMK to encrypt,
AWS KMS uses the current backing key. When you use the CMK to decrypt, AWS KMS uses the backing
key that was used to encrypt.

• Enable and disable key rotation. Automatic key rotation is disabled by default on customer managed
CMKs. When you enable (or re-enable) key rotation, AWS KMS automatically rotates the CMK 365 days
after the enable date and every 365 days thereafter.

• Disabled CMKs. While a CMK is disabled, AWS KMS does not rotate it. However, the key rotation status
does not change, and you cannot change it while the CMK is disabled. When the CMK is re-enabled,
if the backing key is more than 365 days old, AWS KMS rotates it immediately and every 365 days
thereafter. If the backing key is less than 365 days old, AWS KMS resumes the original key rotation
schedule.

• CMKs pending deletion. While a CMK is pending deletion, AWS KMS does not rotate it. The key
rotation status is set to false and you cannot change it while deletion is pending. If deletion is
canceled, the previous key rotation status is restored. If the backing key is more than 365 days old,
AWS KMS rotates it immediately and every 365 days thereafter. If the backing key is less than 365 days
old, AWS KMS resumes the original key rotation schedule.

• AWS managed CMKs. You cannot manage key rotation for AWS managed CMKs (p. 4). AWS KMS
automatically rotates AWS managed CMKs every three years (1095 days).

• Monitoring key rotation. When AWS KMS automatically rotates the key material for an AWS managed
CMK (p. 4) or customer managed CMK (p. 3), it writes the KMS CMK Rotation event to Amazon
CloudWatch Events. You can use this event to verify that the CMK was rotated.

• Unsupported CMK types. Automatic key rotation is not supported on the following types of CMKs, but
you can rotate these CMKs manually (p. 145).

• Asymmetric CMKs (p. 130)

• CMKs in custom key stores (p. 172)

• CMKs that have imported key material (p. 147)

143

https://aws.amazon.com/kms/pricing/
https://aws.amazon.com/kms/pricing/
https://d0.awsstatic.com/whitepapers/KMS-Cryptographic-Details.pdf
https://d0.awsstatic.com/whitepapers/KMS-Cryptographic-Details.pdf
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/

AWS Key Management Service Developer Guide
How to Enable and Disable Automatic Key Rotation

How to Enable and Disable Automatic Key
Rotation

You can use the AWS KMS console or the AWS KMS API to enable and disable automatic key rotation,
and view the rotation status of any customer managed CMK.

When you enable automatic key rotation, AWS KMS rotates the CMK 365 days after the enable date and
every 365 days thereafter.

Topics
• Enabling and Disabling Key Rotation (Console) (p. 144)
• Enabling and Disabling Key Rotation (KMS API) (p. 144)

Enabling and Disabling Key Rotation (Console)
1. Sign in to the AWS Management Console and open the AWS Key Management Service (AWS KMS)

console at https://console.aws.amazon.com/kms.
2. To change the AWS Region, use the Region selector in the upper-right corner of the page.
3. In the navigation pane, choose Customer managed keys. (You cannot enable or disable rotation of

AWS managed keys. They are automatically rotated every three years.)
4. Choose the alias or key ID of a CMK.
5. Choose the Key rotation tab.

The Key rotation tab only appears on the detail page of symmetric CMKs with key material that
AWS KMS generated (the Origin is AWS_KMS). You cannot automatically rotate asymmetric CMKs,
CMKs with imported key material (p. 147), or CMKs in custom key stores (p. 172). However, you
can rotate them manually (p. 145).

6. Select or clear the Automatically rotate this CMK every year check box.

Note
If a CMK is disabled or pending deletion, the Automatically rotate this CMK every year
check box is cleared, and you cannot change it. The key rotation status is restored when
you enable the CMK or cancel deletion. For details, see How Automatic Key Rotation
Works (p. 143) and How Key State Affects Use of a Customer Master Key (p. 223).

7. Choose Save.

Enabling and Disabling Key Rotation (KMS API)
You can use the AWS Key Management Service (AWS KMS) API to enable and disable automatic key
rotation, and view the current rotation status of any customer managed CMK. These examples use the
AWS Command Line Interface (AWS CLI), but you can use any supported programming language.

The EnableKeyRotation operation enables automatic key rotation for the specified CMK. The
DisableKeyRotation operation disables it. To identify the CMK, use its key ID, key ARN, alias name, or alias
ARN. By default, key rotation is disabled for customer managed CMKs.

The following example enables key rotation on the specified symmetric CMK and uses the
GetKeyRotationStatus operation to see the result. Then, it disables key rotation and, again, uses
GetKeyRotationStatus to see the change.

$ aws kms enable-key-rotation --key-id 1234abcd-12ab-34cd-56ef-1234567890ab

144

https://console.aws.amazon.com/kms
https://docs.aws.amazon.com/kms/latest/APIReference/
https://aws.amazon.com/cli/
https://docs.aws.amazon.com/kms/latest/APIReference/API_EnableKeyRotation.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DisableKeyRotation.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetKeyRotationStatus.html

AWS Key Management Service Developer Guide
Rotating Keys Manually

$ aws kms get-key-rotation-status --key-id 1234abcd-12ab-34cd-56ef-1234567890ab
{
 "KeyRotationEnabled": true
}

$ aws kms disable-key-rotation --key-id 1234abcd-12ab-34cd-56ef-1234567890ab

$ aws kms get-key-rotation-status --key-id 1234abcd-12ab-34cd-56ef-1234567890ab
{
 "KeyRotationEnabled": false
}

Rotating Keys Manually
You might want to create a new CMK and use it in place of a current CMK instead of enabling automatic
key rotation. When the new CMK has different cryptographic material than the current CMK, using the
new CMK has the same effect as changing the backing key in an existing CMK. The process of replacing
one CMK with another is known as manual key rotation.

You might prefer to rotate keys manually so you can control the rotation frequency. It's also a good
solution for CMKs that are not eligible for automatic key rotation, such as asymmetric CMKs, CMKs in
custom key stores (p. 172) and CMKs with imported key material (p. 147).

Note
When you begin using the new CMK, be sure to keep the original CMK enabled so that AWS KMS
can decrypt data that the original CMK encrypted. When decrypting data, KMS identifies the
CMK that was used to encrypt the data, and it uses the same CMK to decrypt the data. As long
as you keep both the original and new CMKs enabled, AWS KMS can decrypt any data that was
encrypted by either CMK.

Because the new CMK is a different resource from the current CMK, it has a different key ID and ARN.
When you change CMKs, you need to update references to the CMK ID or ARN in your applications.

145

AWS Key Management Service Developer Guide
Rotating Keys Manually

Aliases, which associate a friendly name with a CMK, make this process easier. Use an alias to refer to a
CMK in your applications. Then, when you want to change the CMK that the application uses, change the
target CMK of the alias.

To update the target CMK of an alias, use UpdateAlias operation in the AWS KMS API. For example, this
command updates the TestCMK alias to point to a new CMK. Because the operation does not return
any output, the example uses the ListAliases operation to show that the alias is now associated with a
different CMK.

$ aws kms list-aliases
{
 "Aliases": [
 {
 "AliasArn": "arn:aws:kms:us-west-2:111122223333:alias/TestCMK",
 "AliasName": "alias/TestCMK",
 "TargetKeyId": "1234abcd-12ab-34cd-56ef-1234567890ab"
 },
]
}

$ aws kms update-alias --alias-name alias/TestCMK --target-key-id 0987dcba-09fe-87dc-65ba-
ab0987654321

$ aws kms list-aliases
{
 "Aliases": [
 {
 "AliasArn": "arn:aws:kms:us-west-2:111122223333:alias/TestCMK",
 "AliasName": "alias/TestCMK",
 "TargetKeyId": "0987dcba-09fe-87dc-65ba-ab0987654321"
 },
]
}

146

https://docs.aws.amazon.com/kms/latest/APIReference/API_UpdateAlias.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ListAliases.html

AWS Key Management Service Developer Guide
About Imported Key Material

Importing Key Material in AWS Key
Management Service (AWS KMS)

A customer master key (CMK) is a logical representation of a master key in AWS KMS. In addition
to the master key's identifiers and other metadata including its creation date, description, and key
state (p. 223), a CMK contains the key material used to encrypt and decrypt data. When you create a
CMK (p. 17), by default AWS KMS generates the key material for that CMK. But you can create a CMK
without key material and then import your own key material into that CMK, a feature often known as
"bring your own key" (BYOK).

Imported key material is supported only for symmetric CMKs in AWS KMS key stores. It is not supported
on asymmetric CMK or CMKs in custom key stores (p. 172).

Note
Asymmetric CMKs and asymmetric data key pairs are supported by AWS KMS only in the
following AWS Regions: US East (N. Virginia), US West (Oregon), Asia Pacific (Sydney), Asia
Pacific (Tokyo), and Europe (Ireland).

When you use imported key material, you remain responsible for the key material while allowing AWS
KMS to use a copy of it. You might choose to do this for one or more of the following reasons:

• To prove that you generated the key material using a source of entropy that meets your requirements.
• To use key material from your own infrastructure with AWS services, and to use AWS KMS to manage

the lifecycle of that key material within AWS.
• To set an expiration time for the key material in AWS and to manually delete it (p. 157), but to also

make it available again in the future. In contrast, scheduling key deletion (p. 160) requires a waiting
period of 7 to 30 days, after which you cannot recover the deleted CMK.

• To own the original copy of the key material, and to keep it outside of AWS for additional durability
and disaster recovery during the complete lifecycle of the key material.

For information about important differences between CMKs with imported key material and those with
key material generated by AWS KMS, see About Imported Key Material (p. 147).

The key material you import must be a 256-bit symmetric encryption key.

Topics

• About Imported Key Material (p. 147)
• How To Import Key Material (p. 148)
• How to Reimport Key Material (p. 148)
• How to Identify CMKs with Imported Key Material (p. 149)

About Imported Key Material
Before you decide to import key material into AWS KMS, you should understand the following
characteristics of imported key material.

Secure key generation

You are responsible for generating the key material using a source of randomness that meets your
security requirements.

147

AWS Key Management Service Developer Guide
How To Import Key Material

One key per CMK

When you import key material into a CMK, the CMK is permanently associated with that key material.
You can reimport the same key material (p. 148), but you cannot import different key material into
that CMK. Also, you cannot enable automatic key rotation (p. 142) for a CMK with imported key material.
However, you can manually rotate a CMK (p. 145) with imported key material.

One CMK per ciphertext

When you encrypt data under a KMS CMK, the ciphertext cannot be decrypted with any other CMK. This
is true even when you import the same key material into a different CMK.

Availability and durability

You are responsible for the key material's overall availability and durability. AWS KMS is designed to keep
imported key material highly available. But the service does not maintain the durability of imported key
material at the same level as key material generated on your behalf. This difference is meaningful in the
following cases:

• When you set an expiration time for your imported key material, AWS KMS deletes the key material
after it expires. AWS KMS does not delete the CMK or its metadata. You cannot set an expiration time
for key material generated by AWS KMS.

• When you manually delete imported key material (p. 157), AWS KMS deletes the key material but
does not delete the CMK or its metadata. In contrast, scheduling key deletion (p. 160) requires a
waiting period of 7 to 30 days, after which AWS KMS deletes the key material and all of the CMK's
metadata.

• In the unlikely event of certain regionwide failures that affect the service (such as a total loss of
power), AWS KMS cannot automatically restore your imported key material. However, AWS KMS can
restore the CMK and its metadata.

To restore the key material after events like these, you must retain a copy of the key material in a system
that you control. Then, you can reimport it into the CMK.

How To Import Key Material
The following overview explains how to import your key material into AWS KMS. For more details about
each step in the process, see the corresponding topic.

1. Create a symmetric CMK with no key material (p. 150) – To get started with importing key material,
first create a symmetric CMK whose origin is EXTERNAL. This indicates that the key material was
generated outside of AWS KMS and prevents AWS KMS from generating key material for the CMK. In a
later step you will import your own key material into this CMK.

2. Download the public key and import token (p. 152) – After completing step 1, download a public key
and an import token. These items protect the import of your key material to AWS KMS.

3. Encrypt the key material (p. 155) – Use the public key that you downloaded in step 2 to encrypt the
key material that you created on your own system.

4. Import the key material (p. 156) – Upload the encrypted key material that you created in step 3 and
the import token that you downloaded in step 2.

How to Reimport Key Material
If you manage a CMK with imported key material, you might need to reimport the key material, either
because the key material expired, or because the key material was accidentally deleted or lost.

148

AWS Key Management Service Developer Guide
How to Identify CMKs with Imported Key Material

You must reimport the same key material that was originally imported into the CMK. You cannot import
different key material into a CMK. Also, AWS KMS cannot create key material for a CMK that is created
without key material.

To reimport key material, use the same procedure that you used to import the key material (p. 148) the
first time, with the following exceptions.

• Use an existing CMK, instead of creating a new CMK. You can skip Step 1 (p. 150) of the import
procedure.

• If the CMK contains key material, you must delete the existing key material (p. 157) before you
reimport the key material.

Each time you import key material to a CMK, you need to download and use a new wrapping key and
import token (p. 152) for the CMK. The wrapping procedure does not affect the content of the key
material, so you can use different wrapping keys (and different import tokens) to import the same key
material.

How to Identify CMKs with Imported Key Material
When you create a CMK with no key material, the value of the Origin property of the CMK is EXTERNAL,
and it cannot be changed. You cannot convert a key that is designed to use imported key material to one
that uses the key material that AWS KMS provides.

You can identify CMKs that require imported key material in the AWS KMS console or by using the AWS
KMS API.

To identify the value of the Origin property of
CMKs (Console)
1. Open the AWS KMS console at https://console.aws.amazon.com/kms.

2. To change the AWS Region, use the Region selector in the upper-right corner of the page.

3. Use either of the following techniques to view the Origin property of your CMKs.

• To add an Origin column to your CMK table, in the upper right corner, choose the Settings icon.
Choose Origin and choose Confirm. The Origin column makes it easy to identify CMKs with an
EXTERNAL origin property value.

• To find the value of the Origin property of a particular CMK, choose the key ID or alias of the
CMK. The Origin property value appears in the General configuration section.

To identify the value of the Origin property of
CMKs (KMS API)
Use the DescribeKey operation. The response includes the Origin property of the CMK, as shown in the
following example.

$ aws kms describe-key --key-id 1234abcd-12ab-34cd-56ef-1234567890ab
{
 "KeyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "Origin": "EXTERNAL",
 "KeyManager": "CUSTOMER",

149

https://console.aws.amazon.com/kms
https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html

AWS Key Management Service Developer Guide
Step 1: Create a CMK with No Key Material

 "ValidTo": 1549224000.0,
 "Enabled": true,
 "AWSAccountId": "111122223333",
 "Arn": "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "CreationDate": 1517867689.949,
 "KeyUsage": "ENCRYPT_DECRYPT",
 "Description": "example-key",
 "KeyState": "Enabled",
 "ExpirationModel": "KEY_MATERIAL_EXPIRES"
}

Importing Key Material Step 1: Create an AWS KMS
Customer Master Key (CMK) With No Key Material

By default, AWS KMS creates key material for you when you create a customer master key (CMK). To
instead import your own key material, start by creating a CMK with no key material. You distinguish
between these two types of CMKs by the CMK's origin. When AWS KMS creates the key material for you,
the CMK's origin is AWS_KMS. When you create a CMK with no key material, the CMK's origin is EXTERNAL,
which indicates that the key material was generated outside of AWS KMS.

A CMK with no key material is in the pending import state and is not available for use. To use it, you must
import key material as explained later. When you import key material, the CMK's key state changes to
enabled. For more information about key state, see How Key State Affects Use of a Customer Master
Key (p. 223).

To create a CMK with no key material, you can use the AWS Management Console or the AWS KMS API.
You can use the API directly by making HTTP requests, or through one of the AWS SDKs or command line
tools.

Topics
• Creating a CMK with No Key Material (Console) (p. 150)
• Creating a CMK with No Key Material (KMS API) (p. 151)

Creating a CMK with No Key Material (Console)
You can use the AWS Management Console to create a CMK with no key material. Before you do this, you
can configure the console to show the Origin column in the list of CMKs. Imported keys have an Origin
value of External.

You need to create a CMK for the imported key material only once. To reimport the same key material
into an existing CMK, see Step 2: Download the Public Key and Import Token (p. 152).

1. Sign in to the AWS Management Console and open the AWS Key Management Service (AWS KMS)
console at https://console.aws.amazon.com/kms.

2. To change the AWS Region, use the Region selector in the upper-right corner of the page.
3. In the navigation pane, choose Customer managed keys.
4. Choose Create key.
5. Choose Symmetric. You cannot import key material into an asymmetric CMK.

Note
Asymmetric CMKs and asymmetric data key pairs are supported by AWS KMS only in the
following AWS Regions: US East (N. Virginia), US West (Oregon), Asia Pacific (Sydney), Asia
Pacific (Tokyo), and Europe (Ireland).

150

https://aws.amazon.com/tools/#sdk
https://aws.amazon.com/tools/#cli
https://aws.amazon.com/tools/#cli
https://console.aws.amazon.com/kms

AWS Key Management Service Developer Guide
Creating a CMK with No Key Material (KMS API)

6. Expand Advanced options.

7. For Key material origin, choose External.

Then select the check box next to I understand the security, availability, and durability
implications of using an imported key to indicate that you understand the implications of using
imported key material. To read about these implications, see About Imported Key Material (p. 147).

Choose Next.

8. Type an alias and (optionally) a description for the CMK.

Choose Next.

9. (Optional). On the Add tags page, add tags that identify or categorize your CMK.

Choose Next.

10. In the Key administrators section, select the IAM users and roles who can manage the CMK. For
more information, see Allows Key Administrators to Administer the CMK (p. 52).

Note
IAM policies can give other IAM users and roles permission to manage the CMK.

11. (Optional) To prevent the selected IAM users and roles from deleting this CMK, in the Key deletion
section at the bottom of the page, clear the Allow key administrators to delete this key check box.

Choose Next.

12. In the This account section, select the IAM users and roles in this AWS account who can use the CMK
in cryptographic operations. For more information, see Allows Key Users to Use the CMK (p. 54).

Note
IAM policies can give other IAM users and roles permission to use the CMK.

13. (Optional) You can allow other AWS accounts to use this CMK for cryptographic operations. To do so,
in the Other AWS accounts section at the bottom of the page, choose Add another AWS account
and enter the AWS account identification number of an external account. To add multiple external
accounts, repeat this step.

Note
To allow principals in the external accounts to use the CMK, Administrators of the external
account must create IAM policies that provide these permissions. For more information, see
Allowing Users in Other Accounts to Use a CMK (p. 71).

Choose Next.

14. On the Review and edit key policy page, review and edit the policy document for the new CMK.
When you're done, choose Finish .

If the operation succeeds, you have created a CMK with no key material. Its status is Pending
import. To continue the process now, see Downloading the Public Key and Import Token
(Console) (p. 153). To continue the process later, choose Cancel.

Next: Step 2: Download the Public Key and Import Token (p. 152).

Creating a CMK with No Key Material (KMS API)
To use the AWS KMS API to create a symmetric CMK with no key material, send a CreateKey request with
the Origin parameter set to EXTERNAL. The following example shows how to do this with the AWS
Command Line Interface (AWS CLI).

$ aws kms create-key --origin EXTERNAL

151

https://docs.aws.amazon.com/kms/latest/APIReference/
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateKey.html
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/

AWS Key Management Service Developer Guide
Step 2: Download the Public Key and Import Token

When the command is successful, you see output similar to the following. The CMK's Origin is
EXTERNAL and its KeyState is PendingImport.

{
 "KeyMetadata": {
 "Origin": "EXTERNAL",
 "KeyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "Description": "",
 "Enabled": false,
 "KeyUsage": "ENCRYPT_DECRYPT",
 "KeyState": "PendingImport",
 "CreationDate": 1532127239.034,
 "Arn": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "AWSAccountId": "111122223333"
 "KeyManager": "CUSTOMER",
 "CustomerMasterKeySpec": "SYMMETRIC_DEFAULT",
 "EncryptionAlgorithms": [
 "SYMMETRIC_DEFAULT"
]
 }
}

Copy the CMK's key ID from your command output to use in later steps, and then proceed to Step 2:
Download the Public Key and Import Token (p. 152).

Importing Key Material Step 2: Download the
Public Key and Import Token

After you create a symmetric customer master key (CMK) with no key material (p. 150), you download a
public key and an import token for that CMK. You need these items to import your key material. You can
download both items in one step by using the AWS Management Console or the AWS KMS API.

You also download these items when you want to reimport key material into a CMK. You might do this
to manually rotate the key material (p. 145), to change the expiration time for the key material, or to
restore a CMK after the key material has expired or been deleted.

Use of the Public Key

When you import key material, you don't upload the raw key material to AWS KMS. You must first
encrypt the key material with the public key that you download in this step and then upload the
encrypted key material to AWS KMS. When AWS KMS receives your encrypted key material, it uses
the corresponding private key to decrypt it. The public key that you receive from AWS KMS is a
2048-bit RSA public key and is always unique to your AWS account.

Use of the Import Token

The import token contains metadata to ensure that your key material is imported correctly. When
you upload your encrypted key material to AWS KMS, you must upload the same import token that
you download in this step.

Select a Wrapping Algorithm

To protect your key material during import, you encrypt it using a wrapping key and wrapping
algorithm. Typically, you choose an algorithm that is supported by the hardware security module
(HSM) or key management system that protects your key material. You must use the RSA PKCS #1
encryption scheme with one of three padding options, represented by the following choices. These
choices are listed in order of AWS preference. The technical details of the schemes represented by
these choices are explained in section 7 of the PKCS #1 Version 2.1 standard.

152

https://tools.ietf.org/html/rfc3447

AWS Key Management Service Developer Guide
Downloading the Public Key and Import Token (Console)

• RSAES_OAEP_SHA_256 – The RSA encryption algorithm with Optimal Asymmetric Encryption
Padding (OAEP) with the SHA-256 hash function.

• RSAES_OAEP_SHA_1 – The RSA encryption algorithm with Optimal Asymmetric Encryption
Padding (OAEP) with the SHA-1 hash function.

• RSAES_PKCS1_V1_5 – The RSA encryption algorithm with the padding format defined in PKCS #1
Version 1.5.

Note
If you plan to try the Encrypt Key Material with OpenSSL (p. 155) proof-of-concept
example in Step 3 (p. 155), use RSAES_OAEP_SHA_1.

If your HSM or key management system supports it, we recommend using RSAES_OAEP_SHA_256
to encrypt your key material. If that option is not available, you should use RSAES_OAEP_SHA_1. If
neither of the OAEP options are available, you must use RSAES_PKCS1_V1_5. For information about
how to encrypt your key material, see the documentation for the hardware security module or key
management system that protects your key material.

The public key and import token are valid for 24 hours. If you don't use them to import key material
within 24 hours of downloading them, you must download new ones.

To download the public key and import token, you can use the AWS Management Console or the AWS
KMS API. You can use the API directly by making HTTP requests, or through one of the AWS SDKs or
command line tools.

Topics
• Downloading the Public Key and Import Token (Console) (p. 153)
• Downloading the Public Key and Import Token (KMS API) (p. 154)

Downloading the Public Key and Import Token
(Console)
You can use the AWS Management Console to download the public key and import token.

1. If you just completed the steps to create a CMK with no key material (p. 150) and you are on the
Download wrapping key and import token page, skip to Step 8.

2. Sign in to the AWS Management Console and open the AWS Key Management Service (AWS KMS)
console at https://console.aws.amazon.com/kms.

3. To change the AWS Region, use the Region selector in the upper-right corner of the page.
4. In the navigation pane, choose Customer managed keys.

Tip
You can import key material only into a symmetric CMK with an Origin of EXTERNAL. This
indicates that the CMK was created with no key material. To add the Origin column to

your table, in the upper-right corner of the page, choose the settings icon (). Turn on
Origin, and then choose Confirm.

5. Choose the alias or key ID of the CMK that is pending import.
6. Expand the Cryptographic configuration section and view its values.

You can only import key material into CMKs with a Key type of Symmetric and an Origin of
EXTERNAL. For information about creating CMKs with imported key material, see, Importing Key
Material in AWS Key Management Service (AWS KMS) (p. 147).

7. Expand the Key material section, and then choose Download wrapping key and import token.

153

https://aws.amazon.com/tools/#sdk
https://aws.amazon.com/tools/#cli
https://console.aws.amazon.com/kms

AWS Key Management Service Developer Guide
Downloading the Public Key and Import Token (KMS API)

The Key material section appears only for symmetric CMKs that have an Origin value of EXTERNAL.
8. For Select wrapping algorithm, choose the option that you will use to encrypt your key material.

For more information about the options, see Select a Wrapping Algorithm (p. 152).

If you plan to try the Encrypt Key Material with OpenSSL (p. 155) proof-of-concept example in
Step 3 (p. 155), choose RSAES_OAEP_SHA_1.

9. Choose Download wrapping key and import token, and then save the file.

If you have a Next option, to continue the process now, choose Next. To continue later, choose
Cancel. Otherwise, to close the window, choose Cancel or click the X.

10. Decompress the .zip file that you saved in the previous step (ImportParameters.zip).

The folder contains the following files:

• The wrapping key (public key), in a file named wrappingKey_CMK_key_ID_timestamp (for
example, wrappingKey_f44c4e20-f83c-48f4-adc6-a1ef38829760_0809092909). This is a
2048-bit RSA public key.

• The import token, in a file named importToken_CMK_key_ID_timestamp (for example,
importToken_f44c4e20-f83c-48f4-adc6-a1ef38829760_0809092909).

• A text file named README_CMK_key_ID_timestamp.txt (for example, README_f44c4e20-
f83c-48f4-adc6-a1ef38829760_0809092909.txt). This file contains information about the
wrapping key (public key), the wrapping algorithm to use to encrypt your key material, and the
date and time when the wrapping key (public key) and import token expire.

11. To continue the process, see encrypt your key material (p. 155).

Downloading the Public Key and Import Token (KMS
API)
To use the AWS KMS API to download the public key and import token, send a GetParametersForImport
request that specifies the CMK for which you are downloading these items. The following example shows
how to do this with the AWS CLI.

This example specifies RSAES_OAEP_SHA_1 as the encryption option. To specify a different option,
replace RSAES_OAEP_SHA_1 with RSAES_OAEP_SHA_256 or RSAES_PKCS1_V1_5. Replace
1234abcd-12ab-34cd-56ef-1234567890ab with the key ID of the CMK for which to download the
public key and import token. You can use the CMK's key ID or Amazon Resource Name (ARN), but you
cannot use an alias for this operation.

Note
If you plan to try the Encrypt Key Material with OpenSSL (p. 155) proof-of-concept example in
Step 3 (p. 155), specify RSAES_OAEP_SHA_1.

$ aws kms get-parameters-for-import --key-id 1234abcd-12ab-34cd-56ef-1234567890ab \
 --wrapping-algorithm RSAES_OAEP_SHA_1 \
 --wrapping-key-spec RSA_2048

When the command is successful, you see output similar to the following:

{
 "ParametersValidTo": 1470933314.949,
 "PublicKey": "public key base64 encoded data",
 "KeyId": "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "ImportToken": "import token base64 encoded data"
}

154

https://docs.aws.amazon.com/kms/latest/APIReference/
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetParametersForImport.html
https://aws.amazon.com/cli/

AWS Key Management Service Developer Guide
Step 3: Encrypt the Key Material

When you receive this output, save the base64 encoded public key and import token in separate files.
Then base64 decode each file into binary data and save the binary data in new files. Doing so prepares
these items for later steps. See the following example.

To prepare the public key and import token for later steps

1. Copy the public key's base64 encoded data (represented by public key base64 encoded data
in the example output), paste it into a new file, and then save the file. Give the file a descriptive
name, for example PublicKey.b64.

2. Use OpenSSL to base64 decode the file's contents and save the decoded data to a new
file. The following example decodes the data in the file that you saved in the previous step
(PublicKey.b64) and saves the output to a new file named PublicKey.bin.

$ openssl enc -d -base64 -A -in PublicKey.b64 -out PublicKey.bin

Repeat these two steps for the import token, and then proceed to Step 3: Encrypt the Key
Material (p. 155).

Importing Key Material Step 3: Encrypt the Key
Material

After you download the public key and import token (p. 152), you use the public key to encrypt your
key material. The key material must be in binary format.

Typically, you encrypt your key material when you export it from your hardware security module (HSM)
or key management system. For information about how to export key material in binary format, see the
documentation for your HSM or key management system. You can also refer to the following section
that provides a proof of concept demonstration using OpenSSL.

When you encrypt your key material, use the encryption scheme with the padding option that you
specified when you downloaded the public key and import token (p. 152) (RSAES_OAEP_SHA_256,
RSAES_OAEP_SHA_1, or RSAES_PKCS1_V1_5).

Example: Encrypt Key Material with OpenSSL
The following example demonstrates how to use OpenSSL to generate a 256-bit symmetric key and then
encrypt this key material for import into a KMS customer master key (CMK).

Important
This example is a proof of concept demonstration only. For production systems, use a more
secure method (such as a commercial HSM or key management system) to generate and store
your key material.
The RSAES_OAEP_SHA_1 encryption algorithm works best with this example. Before running
the example, make sure that you used RSAES_OAEP_SHA_1 for the wrapping algorithm in Step
2 (p. 152). If necessary, repeat the step to download and import the public key and token.

To use OpenSSL to generate binary key material and encrypt it for import into AWS KMS

1. Use the following command to generate a 256-bit symmetric key and save it in a file named
PlaintextKeyMaterial.bin.

$ openssl rand -out PlaintextKeyMaterial.bin 32

155

https://openssl.org/
https://openssl.org/

AWS Key Management Service Developer Guide
Step 4: Import the Key Material

2. Use the following command to encrypt the key material with the public key that you downloaded
previously (see Downloading the Public Key and Import Token (KMS API) (p. 154)) and save it in
a file named EncryptedKeyMaterial.bin. Replace PublicKey.bin> with the name of the file
that contains the public key. If you downloaded the public key from the console, this file is named
wrappingKey_CMK_key_ID_timestamp (for example, wrappingKey_f44c4e20-f83c-48f4-
adc6-a1ef38829760_0809092909).

$ openssl rsautl -encrypt \
 -in PlaintextKeyMaterial.bin \
 -oaep \
 -inkey PublicKey.bin \
 -keyform DER \
 -pubin \
 -out EncryptedKeyMaterial.bin

Proceed to Step 4: Import the Key Material (p. 156).

Importing Key Material Step 4: Import the Key
Material

After you encrypt your key material (p. 155), you can import the key material to use with an AWS KMS
customer master key (CMK). To import key material, you upload the encrypted key material from Step
3: Encrypt the Key Material (p. 155) and the import token that you downloaded at Step 2: Download
the Public Key and Import Token (p. 152). You must import key material into the same CMK that you
specified when you downloaded the public key and import token.

When you import key material, you can optionally specify a time at which the key material expires. When
the key material expires, AWS KMS deletes the key material and the CMK becomes unusable. To use the
CMK again, you must reimport key material.

After you successfully import key material, the CMK's key state changes to enabled, and you can use the
CMK.

To import key material, you can use the AWS Management Console or the AWS KMS API. You can use the
API directly by making HTTP requests, or through one of the AWS SDKs or command line tools.

Topics
• Import Key Material (Console) (p. 156)
• Import Key Material (KMS API) (p. 157)

Import Key Material (Console)
You can use the AWS Management Console to import key material.

1. If you are on the Download wrapping key and import token page, skip to Step 8.
2. Sign in to the AWS Management Console and open the AWS Key Management Service (AWS KMS)

console at https://console.aws.amazon.com/kms.
3. To change the AWS Region, use the Region selector in the upper-right corner of the page.
4. In the navigation pane, choose Customer managed keys.
5. Choose the key ID or alias of the CMK for which you downloaded the public key and import token.
6. Expand the Cryptographic configuration section and view its values.

156

https://aws.amazon.com/tools/#sdk
https://aws.amazon.com/tools/#cli
https://console.aws.amazon.com/kms

AWS Key Management Service Developer Guide
Import Key Material (KMS API)

You can only import key material into CMKs with a Key type of Symmetric and an Origin of
EXTERNAL. For information about creating CMKs with imported key material, see Importing Key
Material in AWS Key Management Service (AWS KMS) (p. 147).

7. Expand the Key material section and then choose Upload key material.

The Key material section appears only for CMKs with a Key type of Symmetric and an Origin value
of EXTERNAL.

8. In the Encrypted key material and import token section, under Wrapped key material, choose
Choose file. Then upload the file that contains your wrapped (encrypted) key material.

9. In the Encrypted key material and import token section, under Import token, choose Choose file.
Upload the file that contains the import token that you downloaded (p. 153).

10. In the Expiration option section, you determine whether the key material expires. To set an
expiration date and time, choose Key material expires, and use the calendar to select a date and
time.

11. Choose Finish or Upload key material.

Import Key Material (KMS API)
To use the AWS KMS API to import key material, send an ImportKeyMaterial request. The following
example shows how to do this with the AWS CLI.

This example specifies an expiration time for the key material. To import key material with no expiration,
replace KEY_MATERIAL_EXPIRES with KEY_MATERIAL_DOES_NOT_EXPIRE and omit the --valid-to
parameter.

To use this example:

1. Replace 1234abcd-12ab-34cd-56ef-1234567890ab with the key ID of the CMK that you used
when you downloaded the public key and import token. To identify the CMK, use its key ID or ARN.
You cannot use an alias for this operation.

2. Replace EncryptedKeyMaterial.bin with the name of the file that contains the encrypted key
material.

3. Replace ImportToken.bin with the name of the file that contains the import token.

$ aws kms import-key-material --key-id 1234abcd-12ab-34cd-56ef-1234567890ab \
 --encrypted-key-material fileb://EncryptedKeyMaterial.bin \
 --import-token fileb://ImportToken.bin \
 --expiration-model KEY_MATERIAL_EXPIRES \
 --valid-to 2016-11-08T12:00:00-08:00

Deleting Imported Key Material
When you import key material, you can specify an expiration date. When the key material expires, AWS
KMS deletes the key material and the customer master key (CMK) becomes unusable. You can also delete
key material on demand. Whether you wait for the key material to expire or you delete it manually, the
effect is the same. AWS KMS deletes the key material, the CMK's key state (p. 223) changes to pending
import, and the CMK is unusable. To use the CMK again, you must reimport the same key material.

Deleting key material affects the CMK immediately, but you can reverse the deletion of key material
by reimporting the same key material into the CMK. In contrast, deleting a CMK is irreversible. If you

157

https://docs.aws.amazon.com/kms/latest/APIReference/
https://docs.aws.amazon.com/kms/latest/APIReference/API_ImportKeyMaterial.html
https://aws.amazon.com/cli/

AWS Key Management Service Developer Guide
How Deleting Key Material Affects AWS

Services Integrated With AWS KMS

schedule key deletion (p. 160) and the required waiting period expires, AWS KMS deletes the key
material and all metadata associated with the CMK.

To delete key material, you can use the AWS Management Console or the AWS KMS API. You can use the
API directly by making HTTP requests, or through one of the AWS SDKs or command line tools.

Topics

• How Deleting Key Material Affects AWS Services Integrated With AWS KMS (p. 158)

• Delete Key Material (Console) (p. 158)

• Delete Key Material (KMS API) (p. 159)

How Deleting Key Material Affects AWS Services
Integrated With AWS KMS
When you delete key material, the CMK becomes unusable right away. However, any data keys (p. 4) that
AWS services are using are not immediately affected. This means that deleting key material might not
immediately affect all of the data and AWS resources that are protected under the CMK, though they are
affected eventually.

Several AWS services integrate with AWS KMS to protect your data. Some of these services, such as
Amazon EBS and Amazon Redshift, use a customer master key (p. 2) (CMK) in AWS KMS to generate
a data key (p. 4), and then use the data key to encrypt your data. These plaintext data keys persist in
memory as long as the data they are protecting is actively in use.

For example, consider this scenario:

1. You create an encrypted EBS volume and specify a CMK with imported key material. Amazon EBS asks
AWS KMS to use your CMK to generate an encrypted data key for the volume. Amazon EBS stores the
encrypted data key with the volume.

2. When you attach the EBS volume to an EC2 instance, Amazon EC2 asks AWS KMS to use your CMK to
decrypt the EBS volume's encrypted data key. Amazon EC2 stores the plaintext data key in hypervisor
memory and uses it to encrypt disk I/O to the EBS volume. The data key persists in memory as long as
the EBS volume is attached to the EC2 instance.

3. You delete the imported key material from the CMK, which makes it unusable. This has no immediate
effect on the EC2 instance or the EBS volume. The reason is that Amazon EC2 is using the plaintext
data key—not the CMK—to encrypt all disk I/O while the volume is attached to the instance.

4. However, when the encrypted EBS volume is detached from the EC2 instance, Amazon EBS removes
the plaintext key from memory. The next time the encrypted EBS volume is attached to an EC2
instance, the attachment fails, because Amazon EBS cannot use the CMK to decrypt the volume's
encrypted data key. To use the EBS volume again, you must reimport the same key material into the
CMK.

Delete Key Material (Console)
You can use the AWS Management Console to delete key material.

1. Sign in to the AWS Management Console and open the AWS Key Management Service (AWS KMS)
console at https://console.aws.amazon.com/kms.

2. To change the AWS Region, use the Region selector in the upper-right corner of the page.

3. In the navigation pane, choose Customer managed keys.

4. Do one of the following:

158

https://aws.amazon.com/tools/#sdk
https://aws.amazon.com/tools/#cli
https://docs.aws.amazon.com/kms/latest/developerguide/services-ebs.html
https://docs.aws.amazon.com/kms/latest/developerguide/services-redshift.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://console.aws.amazon.com/kms

AWS Key Management Service Developer Guide
Delete Key Material (KMS API)

• Select the check box for a CMK with imported key material. Choose Key actions, Delete key
material.

• Choose the alias or key ID of a CMK with imported key material. In the Key material section of the
page, choose Delete key material.

5. Confirm that you want to delete the key material and then choose Delete key material. The CMK's
status, which corresponds to its key state (p. 223), changes to Pending import.

Delete Key Material (KMS API)
To use the AWS KMS API to delete key material, send a DeleteImportedKeyMaterial request. The
following example shows how to do this with the AWS CLI.

Replace 1234abcd-12ab-34cd-56ef-1234567890ab with the key ID of the CMK whose key material
you want to delete. You can use the CMK's key ID or ARN but you cannot use an alias for this operation.

$ aws kms delete-imported-key-material --key-id 1234abcd-12ab-34cd-56ef-1234567890ab

159

https://docs.aws.amazon.com/kms/latest/APIReference/
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeleteImportedKeyMaterial.html
https://aws.amazon.com/cli/

AWS Key Management Service Developer Guide
How Deleting CMKs Works

Deleting Customer Master Keys
Deleting a customer master key (CMK) in AWS Key Management Service (AWS KMS) is destructive and
potentially dangerous. It deletes the key material and all metadata associated with the CMK and is
irreversible. After a CMK is deleted, you can no longer decrypt the data that was encrypted under that
CMK, which means that data becomes unrecoverable. You should delete a CMK only when you are sure
that you don't need to use it anymore. If you are not sure, consider disabling the CMK (p. 41) instead of
deleting it. You can reenable a disabled CMK if you need to use it again later, but you cannot recover a
deleted CMK.

Before deleting a CMK, you might want to know how many ciphertexts were encrypted under that
CMK. AWS KMS does not store this information and does not store any of the ciphertexts. To get this
information, you must determine on your own the past usage of a CMK. For some guidance that might
help you do this, go to Determining Past Usage of a Customer Master Key (p. 169).

AWS KMS never deletes your CMKs unless you explicitly schedule them for deletion and the mandatory
waiting period expires.

However, you might choose to delete a CMK for one or more of the following reasons:

• To complete the key lifecycle for CMKs that you no longer need
• To avoid the management overhead and costs associated with maintaining unused CMKs
• To reduce the number of CMKs that count against your CMK resource quota (p. 354)

Note
If you close or delete your AWS account, your CMKs become inaccessible and you are no longer
billed for them. You do not need to schedule deletion of your CMKs separate from closing the
account.

Topics
• How Deleting Customer Master Keys Works (p. 160)
• Scheduling and Canceling Key Deletion (p. 162)
• Adding Permission to Schedule and Cancel Key Deletion (p. 164)
• Creating an Amazon CloudWatch Alarm to Detect Usage of a Customer Master Key that is Pending

Deletion (p. 165)
• Determining Past Usage of a Customer Master Key (p. 169)

How Deleting Customer Master Keys Works
Users who are authorized delete symmetric and asymmetric customer master keys (CMKs). The procedure
is the same for both types of CMKs.

Because it is destructive and potentially dangerous to delete a CMK, AWS KMS enforces a waiting period.
To delete a CMK in AWS KMS you schedule key deletion. You can set the waiting period from a minimum
of 7 days up to a maximum of 30 days. The default waiting period is 30 days.

During the waiting period, the CMK status and key state is Pending deletion.

• A CMK that is pending deletion cannot be used in any cryptographic operations.
• AWS KMS does not rotate the backing keys (p. 143) of CMKs that are pending deletion.

160

https://aws.amazon.com/kms/pricing/
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/close-account.html

AWS Key Management Service Developer Guide
Deleting Asymmetric CMKs

After the waiting period ends, AWS KMS deletes the CMK and all AWS KMS data associated with it,
including all aliases that point to it.

When you schedule key deletion, AWS KMS reports the date and time when the waiting period ends. This
date and time is at least the specified number of days from when you scheduled key deletion, but it can
be up to 24 hours longer. For example, suppose you schedule key deletion and specify a waiting period
of 7 days. In that case, the end of the waiting period occurs no earlier than 7 days and no more than 8
days from the time of your request. You can confirm the exact date and time when the waiting period
ends in the AWS Management Console, AWS CLI, or AWS KMS API.

Use the waiting period to ensure that you don't need the CMK now or in the future. You can configure
an Amazon CloudWatch alarm (p. 165) to warn you if a person or application attempts to use the CMK
during the waiting period. To recover the CMK, you can cancel key deletion before the waiting period
ends. After the waiting period ends you cannot cancel key deletion, and AWS KMS deletes the CMK.

Deleting Asymmetric CMKs
Users who are authorized (p. 164) can delete symmetric or asymmetric CMKs. The procedure to
schedule the deletion of these CMKs is the same for both types of keys. However, because the public
key of an asymmetric CMK can be downloaded (p. 43) and used outside of AWS KMS, the operation
poses significant additional risks, especially for asymmetric CMKs used for encryption (the key usage is
ENCRYPT_DECRYPT).

Note
Asymmetric CMKs and asymmetric data key pairs are supported by AWS KMS only in the
following AWS Regions: US East (N. Virginia), US West (Oregon), Asia Pacific (Sydney), Asia
Pacific (Tokyo), and Europe (Ireland).

• When you schedule the deletion of a CMK, the key state of CMK changes to Pending deletion, and
the CMK cannot be used in cryptographic operations. However, scheduling deletion has no effect on
public keys outside of AWS KMS. Users who have the public key can continue to use them to encrypt
messages. They do not receive any notification that the key state is changed. Unless the deletion is
canceled, ciphertext created with the public key cannot be decrypted.

• Alarms, logs, and other strategies that detect attempted use of CMK that is pending deletion cannot
detect use of the public key outside of AWS KMS.

• When the CMK is deleted, all AWS KMS actions involving that CMK fail. However, users who have the
public key can continue to use them to encrypt messages. These ciphertexts cannot be decrypted.

If you must delete an asymmetric CMK with a key usage of ENCRYPT_DECRYPT, use your CloudTrail Log
entries to determine whether the public key has been downloaded and shared. If it has, verify that the
public key is not being used outside of AWS KMS. Then, consider disabling the CMK (p. 41) instead of
deleting it.

How Deleting Customer Master Keys Affects AWS
Services Integrated With AWS KMS
Several AWS services integrate with AWS KMS to protect your data. Some of these services, such as
Amazon EBS and Amazon Redshift, use a customer master key (p. 2) (CMK) in AWS KMS to generate
a data key (p. 4) and then use the data key to encrypt your data. These plaintext data keys persist in
memory as long as the data they are protecting is actively in use.

Scheduling a CMK for deletion makes it unusable, but it does not prevent the AWS service from using
data keys in memory to encrypt and decrypt your data. The service is not affected until it needs to use
the CMK that is pending deletion or deleted.

For example, consider this scenario:

161

https://docs.aws.amazon.com/kms/latest/developerguide/services-ebs.html
https://docs.aws.amazon.com/kms/latest/developerguide/services-redshift.html

AWS Key Management Service Developer Guide
Scheduling and Canceling Key Deletion

1. You create an encrypted EBS volume and specify a CMK. Amazon EBS asks AWS KMS to use your CMK
to generate an encrypted data key for the volume. Amazon EBS stores the encrypted data key with
the volume.

2. When you attach the EBS volume to an EC2 instance, Amazon EC2 asks AWS KMS to use your CMK to
decrypt the EBS volume's encrypted data key. Amazon EC2 stores the plaintext data key in hypervisor
memory and uses it to encrypt disk I/O to the EBS volume. The data key persists in memory as long as
the EBS volume is attached to the EC2 instance.

3. You schedule the CMK for deletion, which makes it unusable. This has no immediate effect on the EC2
instance or the EBS volume, because Amazon EC2 is using the plaintext data key—not the CMK—to
encrypt disk I/O to the EBS volume.

Even when the scheduled time elapses and AWS KMS deletes the CMK, there is no immediate effect on
the EC2 instance or the EBS volume, because Amazon EC2 is using the plaintext data key, not the CMK.

4. However, when the encrypted EBS volume is detached from the EC2 instance, Amazon EBS removes
the plaintext key from memory. The next time the encrypted EBS volume is attached to an EC2
instance, the attachment fails, because Amazon EBS cannot use the CMK to decrypt the volume's
encrypted data key.

Scheduling and Canceling Key Deletion
The following procedures describe how to schedule key deletion and cancel key deletion in AWS KMS
using the AWS Management Console, the AWS CLI, and the AWS SDK for Java.

Warning
Deleting a customer master key (CMK) in AWS KMS is destructive and potentially dangerous. You
should proceed only when you are sure that you don't need to use the CMK anymore and won't
need to use it in the future. If you are not sure, you should disable the CMK (p. 41) instead of
deleting it.

Before you can delete a CMK, you must have permission to do so. If you rely on the key policy alone to
specify AWS KMS permissions, you might need to add additional permissions before you can delete the
CMK. For information about adding these permissions, go to Adding Permission to Schedule and Cancel
Key Deletion (p. 164).

Ways to schedule and cancel key deletion
• Scheduling and Canceling Key Deletion (Console) (p. 162)
• Scheduling and Canceling Key Deletion (AWS CLI) (p. 163)
• Scheduling and Canceling Key Deletion (AWS SDK for Java) (p. 163)

Scheduling and Canceling Key Deletion (Console)
You can schedule and cancel key deletion in the AWS Management Console.

To schedule key deletion

1. Sign in to the AWS Management Console and open the AWS Key Management Service (AWS KMS)
console at https://console.aws.amazon.com/kms.

2. To change the AWS Region, use the Region selector in the upper-right corner of the page.
3. In the navigation pane, choose Customer managed keys.
4. Select the check box next to the CMK that you want to delete.
5. Choose Key actions, Schedule key deletion.
6. Read and consider the warning, and the information about canceling the deletion during the waiting

period. If you decide to cancel the deletion, choose Cancel.

162

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://console.aws.amazon.com/kms

AWS Key Management Service Developer Guide
Using the AWS CLI

7. For Waiting period (in days), enter a number of days between 7 and 30.
8. Select the check box next to Confirm you want to schedule this key for deletion in <number of

days> days..
9. Choose Schedule deletion.

The CMK status changes to Pending deletion.

To cancel key deletion

1. Open the AWS KMS console at https://console.aws.amazon.com/kms.
2. To change the AWS Region, use the Region selector in the upper-right corner of the page.
3. In the navigation pane, choose Customer managed keys.
4. Select the check box next to the CMK that you want to recover.
5. Choose Key actions, Cancel key deletion.

The CMK status changes from Pending deletion to Disabled. To use the CMK, you must enable it (p. 41).

Scheduling and Canceling Key Deletion (AWS CLI)
Use the aws kms schedule-key-deletion command to schedule key deletion from the AWS CLI as
shown in the following example.

$ aws kms schedule-key-deletion --key-id 1234abcd-12ab-34cd-56ef-1234567890ab --pending-
window-in-days 10

When used successfully, the AWS CLI returns output like the output shown in the following example:

{
 "KeyId": "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "DeletionDate": 1442102400.0
}

Use the aws kms cancel-key-deletion command to cancel key deletion from the AWS CLI as shown
in the following example.

$ aws kms cancel-key-deletion --key-id 1234abcd-12ab-34cd-56ef-1234567890ab

When used successfully, the AWS CLI returns output like the output shown in the following example:

{
 "KeyId": "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
}

The status of the CMK changes from Pending Deletion to Disabled. To use the CMK, you must enable
it (p. 41).

Scheduling and Canceling Key Deletion (AWS SDK for
Java)
The following example demonstrates how to schedule a CMK for deletion with the AWS SDK for Java.
This example requires that you previously instantiated an AWSKMSClient as kms.

163

https://console.aws.amazon.com/kms
https://docs.aws.amazon.com/cli/latest/reference/kms/schedule-key-deletion.html
https://docs.aws.amazon.com/cli/latest/reference/kms/cancel-key-deletion.html

AWS Key Management Service Developer Guide
Adding Permission to Schedule and Cancel Key Deletion

String KeyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

int PendingWindowInDays = 10;

ScheduleKeyDeletionRequest scheduleKeyDeletionRequest =
new
 ScheduleKeyDeletionRequest().withKeyId(KeyId).withPendingWindowInDays(PendingWindowInDays);
kms.scheduleKeyDeletion(scheduleKeyDeletionRequest);

The following example demonstrates how to cancel key deletion with the AWS SDK for Java. This
example requires that you previously instantiated an AWSKMSClient as kms.

String KeyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

CancelKeyDeletionRequest cancelKeyDeletionRequest =
new CancelKeyDeletionRequest().withKeyId(KeyId);
kms.cancelKeyDeletion(cancelKeyDeletionRequest);

The status of the CMK changes from Pending Deletion to Disabled. To use the CMK, you must enable
it (p. 41).

Adding Permission to Schedule and Cancel Key
Deletion

If you use IAM policies to allow AWS KMS permissions, all IAM users and roles that have AWS
administrator access ("Action": "*") or AWS KMS full access ("Action": "kms:*") are already
allowed to schedule and cancel key deletion for AWS KMS CMKs. If you rely on the key policy alone to
allow AWS KMS permissions, you might need to add additional permissions to allow your IAM users and
roles to delete CMKs. To add those permissions, see the following steps.

The following procedures describe how to add permissions to a key policy using the AWS Management
Console or the AWS CLI.

Ways to add permission to schedule and cancel key deletion
• Adding Permission to Schedule and Cancel Key Deletion (Console) (p. 164)
• Adding Permission to Schedule and Cancel Key Deletion (AWS CLI) (p. 165)

Adding Permission to Schedule and Cancel Key
Deletion (Console)
You can use the AWS Management Console to add permissions for scheduling and canceling key
deletion.

1. Sign in to the AWS Management Console and open the AWS Key Management Service (AWS KMS)
console at https://console.aws.amazon.com/kms.

2. To change the AWS Region, use the Region selector in the upper-right corner of the page.
3. In the navigation pane, choose Customer managed keys.
4. Choose the alias or key ID of the CMK whose permissions you want to change.
5. In the Key policy section, under Key deletion, select Allow key administrators to delete this key

and then choose Save changes.

164

https://console.aws.amazon.com/kms

AWS Key Management Service Developer Guide
Using the AWS CLI

Note
If you do not see the Allow key administrators to delete this key option, this usually
means that you have changed this key policy using the AWS KMS API. In this case, you
must update the key policy document manually. Add the kms:ScheduleKeyDeletion
and kms:CancelKeyDeletion permissions to the key administrators statement ("Sid":
"Allow access for Key Administrators") in the key policy, and then choose Save
changes.

Adding Permission to Schedule and Cancel Key
Deletion (AWS CLI)
You can use the AWS Command Line Interface to add permissions for scheduling and canceling key
deletion.

To add permission to schedule and cancel key deletion

1. Use the aws kms get-key-policy command to retrieve the existing key policy, and then save the
policy document to a file.

2. Open the policy document in your preferred text editor, add the kms:ScheduleKeyDeletion
and kms:CancelKeyDeletion permissions to the policy statement that gives permissions to the
key administrators (for example, the policy statement with "Sid": "Allow access for Key
Administrators"). Then save the file. The following example shows a policy statement with these
two permissions:

{
 "Sid": "Allow access for Key Administrators",
 "Effect": "Allow",
 "Principal": {"AWS": "arn:aws:iam::111122223333:user/KMSKeyAdmin"},
 "Action": [
 "kms:Create*",
 "kms:Describe*",
 "kms:Enable*",
 "kms:List*",
 "kms:Put*",
 "kms:Update*",
 "kms:Revoke*",
 "kms:Disable*",
 "kms:Get*",
 "kms:Delete*",
 "kms:ScheduleKeyDeletion",
 "kms:CancelKeyDeletion"
],
 "Resource": "*"
}

3. Use the aws kms put-key-policy command to apply the key policy to the CMK.

Creating an Amazon CloudWatch Alarm to Detect
Usage of a Customer Master Key that is Pending
Deletion

You can combine the features of AWS CloudTrail, Amazon CloudWatch Logs, and Amazon Simple
Notification Service (Amazon SNS) that notify you when someone in your account tries to use a CMK

165

https://docs.aws.amazon.com/cli/latest/reference/kms/get-key-policy.html
https://docs.aws.amazon.com/cli/latest/reference/kms/put-key-policy.html

AWS Key Management Service Developer Guide
Requirements for a CloudWatch Alarm

that is pending deletion in a cryptographic operation. If you receive this notification, you might want to
cancel deletion of the CMK and reconsider your decision to delete it.

The following procedures explain how to receive a notification whenever an AWS KMS API request that
results in the "Key ARN is pending deletion" error message is written to your CloudTrail log
files. This error message indicates that a person or application tried to use the CMK in a cryptographic
operation (Encrypt, Decrypt, GenerateDataKey, GenerateDataKeyWithoutPlaintext,
and ReEncrypt). Because the notification is linked to the error message, it is not triggered when
you use API operations that are permitted on CMKs that are pending deletion, such as ListKeys,
CancelKeyDeletion, and PutKeyPolicy. To see a list of the AWS KMS API operations that return this
error message, see How Key State Affects Use of a Customer Master Key (p. 223).

The notification email that you receive does not list the CMK or the cryptographic operation. You can
find that information in your CloudTrail log (p. 293). Instead, the email reports that the alarm state
changed from OK to Alarm. For more information about CloudWatch Alarms and state changes, see
Creating Amazon CloudWatch Alarms in the Amazon CloudWatch User Guide.

Warning
This Amazon CloudWatch alarm cannot detect use of the public key of an asymmetric CMK
outside of AWS KMS. For details about the special risks of deleting asymmetric CMKs used for
public key cryptography, including creating ciphertexts that cannot be decrypted, see Deleting
Asymmetric CMKs (p. 161).

Topics

• Requirements for a CloudWatch Alarm (p. 166)

• Create the CloudWatch Alarm (p. 166)

Requirements for a CloudWatch Alarm
Before you create a CloudWatch alarm, you must create an AWS CloudTrail trail and configure CloudTrail
to deliver CloudTrail log files to Amazon CloudWatch Logs.

1. Create a CloudTrail trail.

CloudTrail is automatically enabled on your AWS account when you create the account. However, for
an ongoing record of events in your account, including events for AWS KMS, create a trail.

2. Configure CloudTrail to deliver your log files CloudWatch Logs.

Configure delivery of your CloudTrail log files to CloudWatch Logs. This allows CloudWatch Logs to
monitor the logs for AWS KMS API requests that attempt to use a CMK that is pending deletion.

Create the CloudWatch Alarm
To receive a notification when AWS KMS API requests attempt to use a CMK that is pending deletion in a
cryptographic operation, create a CloudWatch alarm and configure notifications.

To create a CloudWatch alarm that monitors attempted usage of a KMS CMK that is pending
deletion

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

2. Use the Region selector on the upper right to choose the AWS Region you want to monitor.

3. In the left navigation pane, choose Logs.

166

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/send-cloudtrail-events-to-cloudwatch-logs.html
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

AWS Key Management Service Developer Guide
Create the CloudWatch Alarm

4. In the list of Log Groups, choose the option button next to your log group. Then choose Create
Metric Filter.

5. For Filter Pattern, type or paste the following:

{ $.eventSource = kms* && $.errorMessage = "* is pending deletion."}

Choose Assign Metric.

6. On the Create Metric Filter and Assign a Metric page, do the following:

a. For Metric Namespace, type CloudTrailLogMetrics.

b. For Metric Name, type KMSKeyPendingDeletionErrorCount.

c. Choose Show advanced metric settings and for Metric Value, type 1, if this is not the current
value.

d. Choose Create Filter.

7. In the filter box, choose Create Alarm.

8. In the Create Alarm window, do the following:

a. In the Alarm Threshold section, for Name, type KMSKeyPendingDeletionErrorAlarm. You
can also add an optional description.

b. Following Whenever, for is, choose >= and then type 1.

c. For 1 out of n datapoints, if necessary, type 1.

d. In the Additional settings section, for Treat missing data as, choose good (not breaching
threshold).

e. In the Actions section, for Send notification to, do one of the following:

• To use a new Amazon SNS topic, choose New list, and then type a new topic name, such as
KMSAlert. For Email list, type at least one email address. You can type more than one email
address by separating them with commas.

• To use an existing Amazon SNS topic, choose the name of the topic to use.

f. Choose Create Alarm.

167

AWS Key Management Service Developer Guide
Create the CloudWatch Alarm

9. If you chose to send notifications to an email address, open the email message you receive from no-
reply@sns.amazonaws.com with a subject "AWS Notification - Subscription Confirmation." Confirm
your email address by choosing the Confirm subscription link in the email message.

Note
You will not receive email notifications until after you have confirmed your email address.

After you complete this procedure, you will receive a notification each time this CloudWatch alarm enters
the ALARM state. If you receive a notification for this alarm, it might mean that someone or something
still needs to use this CMK. In that case, you should cancel deletion of the CMK (p. 162) to give yourself
more time to determine whether you really want to delete it.

168

AWS Key Management Service Developer Guide
Determining Past Usage of a CMK

Determining Past Usage of a Customer Master Key
Before deleting a customer master key (CMK), you might want to know how many ciphertexts were
encrypted under that key. AWS KMS does not store this information, and does not store any of the
ciphertexts. To obtain this information, you must determine on your own the past usage of a CMK.
Knowing how a CMK was used in the past might help you decide whether or not you will need it in the
future. The following guidance can help you determine the past usage of a CMK.

Warning
These strategies for determining past and actual usage are effective only for AWS users and
AWS KMS operations. They cannot detect use of the public key of an asymmetric CMK outside
of AWS KMS. For details about the special risks of deleting asymmetric CMKs used for public key
cryptography, including creating ciphertexts that cannot be decrypted, see Deleting Asymmetric
CMKs (p. 161).

Topics
• Examining CMK Permissions to Determine the Scope of Potential Usage (p. 169)
• Examining AWS CloudTrail Logs to Determine Actual Usage (p. 169)

Examining CMK Permissions to Determine the Scope
of Potential Usage
Determining who or what currently has access to a customer master key (CMK) might help you determine
how widely the CMK was used and whether it is still needed. To learn how to determine who or what
currently has access to a CMK, go to Determining Access to an AWS KMS Customer Master Key (p. 118).

Examining AWS CloudTrail Logs to Determine Actual
Usage
AWS KMS is integrated with AWS CloudTrail, so all AWS KMS API activity is recorded in CloudTrail log
files. If you have CloudTrail turned on in the region where your customer master key (CMK) is located,
you can examine your CloudTrail log files to view a history of all AWS KMS API activity for a particular
CMK, and thus its usage history. You might be able to use a CMK's usage history to help you determine
whether or not you still need it.

The following examples show CloudTrail log entries that are generated when a KMS CMK is used to
protect an object stored in Amazon Simple Storage Service (Amazon S3). In this example, the object is
uploaded to Amazon S3 using server-side encryption with AWS KMS-managed keys (SSE-KMS) (p. 265).
When you upload an object to Amazon S3 with SSE-KMS, you specify the KMS CMK to use for protecting
the object. Amazon S3 uses the AWS KMS GenerateDataKey operation to request a unique data key for
the object, and this request event is logged in CloudTrail with an entry similar to the following:

{
 "eventVersion": "1.02",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AROACKCEVSQ6C2EXAMPLE:example-user",
 "arn": "arn:aws:sts::111122223333:assumed-role/Admins/example-user",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2015-09-10T23:12:48Z"

169

AWS Key Management Service Developer Guide
Examining AWS CloudTrail Logs to Determine Actual Usage

 },
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AROACKCEVSQ6C2EXAMPLE",
 "arn": "arn:aws:iam::111122223333:role/Admins",
 "accountId": "111122223333",
 "userName": "Admins"
 }
 },
 "invokedBy": "internal.amazonaws.com"
 },
 "eventTime": "2015-09-10T23:58:18Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "GenerateDataKey",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "internal.amazonaws.com",
 "userAgent": "internal.amazonaws.com",
 "requestParameters": {
 "encryptionContext": {"aws:s3:arn": "arn:aws:s3:::example_bucket/example_object"},
 "keySpec": "AES_256",
 "keyId": "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 },
 "responseElements": null,
 "requestID": "cea04450-5817-11e5-85aa-97ce46071236",
 "eventID": "80721262-21a5-49b9-8b63-28740e7ce9c9",
 "readOnly": true,
 "resources": [{
 "ARN": "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "accountId": "111122223333"
 }],
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
}

When you later download this object from Amazon S3, Amazon S3 sends a Decrypt request to AWS
KMS to decrypt the object's data key using the specified CMK. When you do this, your CloudTrail log files
include an entry similar to the following:

{
 "eventVersion": "1.02",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AROACKCEVSQ6C2EXAMPLE:example-user",
 "arn": "arn:aws:sts::111122223333:assumed-role/Admins/example-user",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2015-09-10T23:12:48Z"
 },
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AROACKCEVSQ6C2EXAMPLE",
 "arn": "arn:aws:iam::111122223333:role/Admins",
 "accountId": "111122223333",
 "userName": "Admins"
 }
 },
 "invokedBy": "internal.amazonaws.com"
 },
 "eventTime": "2015-09-10T23:58:39Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "Decrypt",

170

AWS Key Management Service Developer Guide
Examining AWS CloudTrail Logs to Determine Actual Usage

 "awsRegion": "us-west-2",
 "sourceIPAddress": "internal.amazonaws.com",
 "userAgent": "internal.amazonaws.com",
 "requestParameters": {
 "encryptionContext": {"aws:s3:arn": "arn:aws:s3:::example_bucket/example_object"}},
 "responseElements": null,
 "requestID": "db750745-5817-11e5-93a6-5b87e27d91a0",
 "eventID": "ae551b19-8a09-4cfc-a249-205ddba330e3",
 "readOnly": true,
 "resources": [{
 "ARN": "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "accountId": "111122223333"
 }],
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
}

All AWS KMS API activity is logged by CloudTrail. By evaluating these log entries, you might be able to
determine the past usage of a particular CMK, and this might help you determine whether or not you
want to delete it.

To see more examples of how AWS KMS API activity appears in your CloudTrail log files, go to Logging
AWS KMS API Calls with AWS CloudTrail (p. 293). For more information about CloudTrail go to the AWS
CloudTrail User Guide.

171

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/

AWS Key Management Service Developer Guide

Using a Custom Key Store

AWS KMS supports custom key stores (p. 174) backed by AWS CloudHSM clusters. When you create an
AWS KMS customer master key (p. 2) (CMK) in a custom key store, AWS KMS generates and stores non-
extractable key material for the CMK in an AWS CloudHSM cluster that you own and manage. When you
use a CMK in a custom key store, the cryptographic operations are performed in the HSMs in the cluster.
This feature combines the convenience and widespread integration of AWS KMS with the added control
of an AWS CloudHSM cluster in your AWS account.

AWS KMS provides full console and API support for creating, using, and managing your custom key
stores. When you create CMKs in a custom key store, you can use them just as you would any CMK. For
example, you can use the CMKs to generate data keys and encrypt data. You can also use the CMKs in
your custom key store with AWS services that support customer managed CMKs.

Do I need a custom key store?

For most users, the default AWS KMS key store, which is protected by FIPS 140-2 validated cryptographic
modules, fulfills their security requirements. There is no need to add an extra layer of maintenance
responsibility or a dependency on an additional service.

However, you might consider creating a custom key store if your organization has any of the following
requirements:

• Key material cannot be stored in a shared environment.

• Key material must be backed up in multiple AWS Regions.

• Key material must be subject to a secondary, independent audit path.

• The HSMs that generate and store key material must be certified at FIPS 140-2 Level 3.

How do custom key stores work?

Each custom key store is associated with an AWS CloudHSM cluster in your AWS account. When you
connect the custom key store to its cluster, AWS KMS creates the network infrastructure to support
the connection. Then it logs into the key AWS CloudHSM client in the cluster using the credentials of a
dedicated crypto user (p. 175) in the cluster.

You create and manage your custom key stores in AWS KMS and create and manage your HSM clusters
in AWS CloudHSM. When you create customer master keys (CMKs) in an AWS KMS custom key store, you
view and manage the CMKs in AWS KMS. But you can also view and manage their key material in AWS
CloudHSM, just as you would do for other keys in the cluster.

172

https://docs.aws.amazon.com/cloudhsm/latest/userguide/
https://csrc.nist.gov/projects/cryptographic-module-validation-program/Certificate/3139
https://csrc.nist.gov/projects/cryptographic-module-validation-program/Certificate/3139
https://docs.aws.amazon.com/cloudhsm/latest/userguide/compliance.html

AWS Key Management Service Developer Guide

You can create symmetric CMKs (p. 192) with key material generated by AWS KMS in your custom key
store. Custom key stores do not support asymmetric CMKs or CMKs with imported key material (p. 147).

Note
Asymmetric CMKs and asymmetric data key pairs are supported by AWS KMS only in the
following AWS Regions: US East (N. Virginia), US West (Oregon), Asia Pacific (Sydney), Asia
Pacific (Tokyo), and Europe (Ireland).

You can use the same techniques to view and manage the CMKs in your custom key store that you use
for CMKs in the AWS KMS key store. You can control access with IAM and key policies, create tags and
aliases, enable and disable the CMKs, and schedule key deletion. You can use the CMKs for cryptographic
operations and use them with AWS services that integrate with AWS KMS. However, you cannot enable
automatic key rotation and you cannot import key material into a CMK in a custom key store.

In addition, you have full control over the AWS CloudHSM cluster, including creating and deleting HSMs
and managing backups. You can use the AWS CloudHSM client and supported software libraries to view,
audit, and manage the key material for your CMKs. While the custom key store is disconnected, AWS KMS
cannot access it, and users cannot use the CMKs in the custom key store for cryptographic operations.
This added layer of control makes custom key stores a powerful solution for organizations that require it.

Where Do I Start?

To create and manage a custom key store, you use features of AWS KMS and AWS CloudHSM.

1. Start in AWS CloudHSM. Create an active AWS CloudHSM cluster or select an existing cluster. The
cluster must have at least two active HSMs in different Availability Zones. Then create a dedicated
crypto user (CU) account (p. 175) in that cluster for AWS KMS.

2. In AWS KMS, create a custom key store (p. 178) that is associated with your selected AWS CloudHSM
cluster. AWS KMS provides a complete management interface (p. 182) that lets you create, view, edit,
and delete your custom key stores.

3. When you're ready to use your custom key store, connect it to its associated AWS CloudHSM
cluster (p. 186). AWS KMS creates the network infrastructure that it needs to support the
connection. It then logs in to the cluster using the dedicated crypto user account credentials so it can
generate and manage key material in the cluster.

4. Now, you can create customer master keys (CMKs) in your custom key store (p. 192). Just specify the
custom key store when you create the CMK.

173

https://docs.aws.amazon.com/cloudhsm/latest/userguide/getting-started.html

AWS Key Management Service Developer Guide
What is a Custom Key Store?

If you get stuck at any point, you can find help in the Troubleshooting a Custom Key Store (p. 202)
topic. If your question is not answered, use the feedback link at the bottom of each page of this guide or
post a question on the AWS Key Management Service Discussion Forum.

Quotas

There are no resource quotas for the number of custom key stores in an AWS account or Region.
However, there are quotas on the number of AWS CloudHSM clusters in each AWS region, and request
quotas (p. 355) on the rate of cryptographic operations using the CMKs in each custom key store.

Regions

AWS KMS supports custom key stores in all AWS Regions where both AWS KMS and AWS CloudHSM
are available. For a list of AWS Regions that each service supports, see AWS Key Management Service
Endpoints and Quotas and AWS CloudHSM Endpoints and Quotas in the Amazon Web Services General
Reference.

Topics
• What is a Custom Key Store? (p. 174)
• Controlling Access to Your Custom Key Store (p. 176)
• Creating a Custom Key Store (p. 178)
• Managing a Custom Key Store (p. 182)
• Managing CMKs in a Custom Key Store (p. 192)
• Troubleshooting a Custom Key Store (p. 202)

What is a Custom Key Store?
This topic explains some of the concepts used in AWS KMS custom key stores.

Topics
• AWS KMS Custom Key Store (p. 174)
• AWS CloudHSM Cluster (p. 175)
• kmsuser Crypto User (p. 175)
• CMKs in a Custom Key Store (p. 176)

AWS KMS Custom Key Store
A key store is a secure location for storing cryptographic keys. The default key store in AWS KMS also
supports methods for generating and managing the keys that its stores. By default, the customer master
keys (CMKs) that you create in AWS KMS are generated in and protected by hardware security modules
(HSMs) that are FIPS 140-2 validated cryptographic modules. The CMKs never leave the modules
unencrypted.

However, if you require even more control of the HSMs, you can create a custom key store that is backed
by FIPS 140-2 Level 3 HSMs in an AWS CloudHSM cluster that you own and manage.

A custom key store is an AWS KMS resource that is associated with an AWS CloudHSM cluster. When
you create an AWS KMS CMK in your custom key store, AWS KMS generates a 256-bit, persistent, non-
exportable Advanced Encryption Standard (AES) symmetric key in the associated AWS CloudHSM cluster.
This key material never leaves your HSMs unencrypted. When you use a CMK in a custom key store, the
cryptographic operations are performed in the HSMs in the cluster.

Custom key stores combine the convenient and comprehensive key management interface of AWS KMS
with the additional controls provided by an AWS CloudHSM cluster in your AWS account. This integrated

174

https://forums.aws.amazon.com/forum.jspa?forumID=182
https://docs.aws.amazon.com/cloudhsm/latest/userguide/limits.html
https://docs.aws.amazon.com/general/latest/gr/kms.html
https://docs.aws.amazon.com/general/latest/gr/kms.html
https://docs.aws.amazon.com/general/latest/gr/cloudhsm.html
https://csrc.nist.gov/projects/cryptographic-module-validation-program/Certificate/3139
https://docs.aws.amazon.com/cloudhsm/latest/userguide/compliance.html
https://docs.aws.amazon.com/cloudhsm/latest/userguide/

AWS Key Management Service Developer Guide
AWS CloudHSM Cluster

feature lets you create, manage, and use CMKs in AWS KMS while maintaining full control of the HSMs
that store their key material, including managing clusters, HSMs, and backups. You can use the AWS KMS
console and APIs to manage the custom key store and its CMKs. You can also use the AWS CloudHSM
console, APIs, client software, and associated software libraries to manage the associated cluster.

You can view and manage (p. 182) your custom key store, edit its properties (p. 184), and connect
and disconnect it (p. 186) from its associated AWS CloudHSM cluster. If you need to delete a custom
key store (p. 191), you must first delete the CMKs in the custom key store by scheduling their deletion
and waiting until the grace period expires. Deleting the custom key store removes the resource from AWS
KMS, but it does not affect your AWS CloudHSM cluster.

AWS CloudHSM Cluster
Every AWS KMS custom key store is associated with one AWS CloudHSM cluster. When you create a
customer master key (CMK) in your custom key store, AWS KMS creates its key material in the associated
cluster. When you use a CMK in your custom key store, the cryptographic operation is performed in the
associated cluster.

Each AWS CloudHSM cluster can be associated with only one custom key store. The cluster that you
choose cannot be associated with another key store or share a backup history with an associated cluster.
The cluster must be initialized and active, and it must be in the same AWS account and Region as the
AWS KMS custom key store. You can create a new cluster or use an existing one. AWS KMS does not need
exclusive use of the cluster. To create CMKs in the custom key store, its associated cluster it must contain
at least two active HSMs. All other operations require only one HSM.

You specify the cluster when you create the custom key store, and you cannot change it. However, you
can substitute any cluster that shares a backup history with the original cluster. This lets you delete the
cluster, if necessary, and replace it with a cluster created from one of its backups. You retain full control
of the associated AWS CloudHSM cluster so you can manage users and keys, create and delete HSMs, and
use and manage backups.

When you are ready to use your custom key store, you connect it to its associated AWS CloudHSM cluster.
You can connect and disconnect your custom key store (p. 186) at any time. When a custom key store
is connected, you can create and use its CMKs. When it is disconnected, you can view and manage the
custom key store and its CMKs. But you cannot create new CMKs or use the CMKs in the custom key store
for cryptographic operations.

kmsuser Crypto User
To create and manage key material in the associated AWS CloudHSM cluster on your behalf, AWS KMS
uses a dedicated AWS CloudHSM crypto user (CU) in the cluster named kmsuser. The kmsuser CU is a
standard CU account that is automatically synchronized to all HSMs in the cluster and is saved in cluster
backups.

Before you create your custom key store, you create a kmsuser CU account (p. 179) in your AWS
CloudHSM cluster using the createUser command in cloudhsm_mgmt_util. Then when you create the
custom key store (p. 178), you provide the kmsuser account password to AWS KMS. When you connect
the custom key store (p. 186), AWS KMS logs into the cluster as the kmsuser CU and rotates its
password.

AWS KMS remains logged in as kmsuser as long as the custom key store is connected. You should
not use this CU account for other purposes. However, you retain ultimate control of the kmsuser CU
account. At any time, you can find the key handles (p. 201) of keys that kmsuser owns. If necessary,
you can disconnect the custom key store (p. 186), change the kmsuser password, log into the cluster
as kmsuser (p. 208), and view and manage the keys that kmsuser owns.

For instructions on creating your kmsuser CU account, see Create the kmsuser Crypto User (p. 179).

175

https://docs.aws.amazon.com/cloudhsm/latest/userguide/hsm-users.html#crypto-user
https://docs.aws.amazon.com/cloudhsm/latest/userguide/cloudhsm_mgmt_util-createUser.html

AWS Key Management Service Developer Guide
CMKs in a Custom Key Store

CMKs in a Custom Key Store
You can use the AWS Management Console or AWS KMS API to create a customer master key (p. 2) (CMK)
in a custom key store. You use the same technique that you would use on any AWS KMS CMK. The only
difference is that you must identify the custom key store and specify that origin of the key material is the
AWS CloudHSM cluster.

When you create a CMK in a custom key store (p. 192), AWS KMS creates the CMK in AWS KMS and it
generates a 256-bit, persistent, non-exportable Advanced Encryption Standard (AES) symmetric backing
key in its associated cluster. Although AWS CloudHSM supports symmetric and asymmetric keys of
different types, AWS KMS and custom key stores only support AES symmetric keys.

You can view the CMKs in a custom key store in the AWS KMS console, and use the console options to
display the custom key store ID. You can also use the DescribeKey operation to find the custom key store
ID and AWS CloudHSM cluster ID.

The CMKs in a custom key store work just like any CMKs in AWS KMS. Authorized users need the same
permissions to use and manage the CMKs. You use the same console procedures and API operations
to view and manage the CMKs in a custom key store. These include enabling and disabling CMKs,
creating and using tags and aliases, and setting and changing IAM and key policies. You can use
the CMKs in a custom key store for cryptographic operations, and use them with integrated AWS
services (p. 228) that support the use of customer managed CMKs. However, you cannot enable
automatic key rotation (p. 142) or import key material (p. 147) into a CMK in a custom key store.

You also use the same process to schedule deletion (p. 202) of a CMK in a custom key store. After
the waiting period expires, AWS KMS deletes the CMK from KMS. Then it makes a best effort to delete
the key material for the CMK from the associated AWS CloudHSM cluster. However, you might need to
manually delete the orphaned key material (p. 206) from the cluster and its backups.

Controlling Access to Your Custom Key Store
You use IAM policies to control access to your AWS KMS custom key store and your AWS CloudHSM
cluster. You can use IAM policies and key policies to control access to the customer master keys (CMKs)
in your custom key store. We recommend that you provide users, groups, and roles only the permissions
that they require for the tasks that they are likely to perform.

Topics
• Authorizing Custom Key Store Managers and Users (p. 176)
• Authorizing AWS KMS to Manage AWS CloudHSM and Amazon EC2 Resources (p. 177)

Authorizing Custom Key Store Managers and Users
When designing your custom key store, be sure that the principals who use and manage it have only the
permissions that they require. The following list describes the minimum permissions required for custom
key store managers and users.

• Principals who create and manage your custom key store require the following permission to use the
custom key store API operations.
• cloudhsm:DescribeClusters

• kms:CreateCustomKeyStore

• kms:ConnectCustomKeyStore

• kms:DisconnectCustomKeyStore

176

https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html

AWS Key Management Service Developer Guide
Authorizing AWS KMS to Manage AWS
CloudHSM and Amazon EC2 Resources

• kms:UpdateCustomKeyStore

• kms:DeleteCustomKeyStore

• kms:DescribeCustomKeyStores

• iam:CreateServiceLinkedRole

• Principals who create and manage the AWS CloudHSM cluster that is associated with your custom key
store need permission to create and initialize an AWS CloudHSM cluster. This includes permission to
create or use a virtual private cloud, create subnets, and create an Amazon EC2 instance. They might
also need to create and delete HSMs, and manage backups. For lists of the required permissions, see
Restrict User Permissions to What's Necessary for AWS CloudHSM in the AWS CloudHSM User Guide.

• Principals who create and manage customer master keys (CMKs) in your custom key store require
the same permissions as those who create and manage any CMK in AWS KMS. For example, those
principals need an IAM policy with kms:CreateKey permission. No additional permissions are required.
The default key policy (p. 51) for CMKs in a custom key store is identical to the default key policy for
CMKs in AWS KMS.

• Principals who use the CMKs in your custom key store for cryptographic operations need permission
to perform the cryptographic operation with the CMK, such as kms:Decrypt. You can provide these
permissions in an IAM or key policy. But, they do not need any additional permissions to use a CMK in a
custom key store.

Authorizing AWS KMS to Manage AWS CloudHSM
and Amazon EC2 Resources
To support your custom key stores, AWS KMS needs permission to get information about your AWS
CloudHSM clusters. It also needs permission to create the network infrastructure that connects
your custom key store to its AWS CloudHSM cluster. To get these permissions, AWS KMS creates the
AWSServiceRoleForKeyManagementServiceCustomKeyStores service-linked role in your AWS account.
Users who create custom key stores must have the iam:CreateServiceLinkedRole permission that
allows them to create service-linked roles.

Topics

• About the AWS KMS Service-Linked Role (p. 177)

• Create the Service-Linked Role (p. 178)

• Edit the Service-Linked Role Description (p. 178)

• Delete the Service-Linked Role (p. 178)

About the AWS KMS Service-Linked Role
A service-linked role is an IAM role that gives one AWS service permission to call other AWS services
on your behalf. It's designed to make it easier for you to use the features of multiple integrated AWS
services without having to create and maintain complex IAM policies.

For custom key stores, AWS KMS creates the
AWSServiceRoleForKeyManagementServiceCustomKeyStores service-linked role with the
AWSKeyManagementServiceCustomKeyStoresServiceRolePolicy policy. This policy grants the role the
following permissions:

177

https://docs.aws.amazon.com/cloudhsm/latest/userguide/create-iam-user.html#permissions-for-cloudhsm
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html

AWS Key Management Service Developer Guide
Creating a Custom Key Store

• cloudhsm:DescribeClusters
• ec2:AuthorizeSecurityGroupIngress
• ec2:CreateNetworkInterface
• ec2:CreateSecurityGroup
• ec2:DeleteSecurityGroup
• ec2:DescribeSecurityGroups
• ec2:RevokeSecurityGroupEgress

Because the AWSServiceRoleForKeyManagementServiceCustomKeyStores service-linked role trusts
only cks.kms.amazonaws.com, only AWS KMS can assume this service-linked role. This role is limited
to the operations that AWS KMS needs to view your AWS CloudHSM clusters and to connect a custom
key store to its associated AWS CloudHSM cluster. It does not give AWS KMS any additional permissions.
For example, AWS KMS does not have permission to create, manage, or delete your AWS CloudHSM
clusters, HSMs, or backups.

Regions

Like the custom key stores feature, the AWSServiceRoleForKeyManagementServiceCustomKeyStores
role is supported in all AWS Regions where AWS KMS and AWS CloudHSM are available. For a list of AWS
Regions that each service supports, see AWS Key Management Service Endpoints and Quotas and AWS
CloudHSM Endpoints and Quotas in the Amazon Web Services General Reference.

For more information about how AWS services use service-linked roles, see Using Service-Linked Roles in
the IAM User Guide.

Create the Service-Linked Role
AWS KMS automatically creates the AWSServiceRoleForKeyManagementServiceCustomKeyStores
service-linked role in your AWS account when you create a custom key store, if the role does not already
exist. You cannot create or re-create this service-linked role directly.

Edit the Service-Linked Role Description
You cannot edit the role name or the policy statements in the
AWSServiceRoleForKeyManagementServiceCustomKeyStores service-linked role, but you can edit role
description. For instructions, see Editing a Service-Linked Role in the IAM User Guide.

Delete the Service-Linked Role
AWS KMS does not delete the AWSServiceRoleForKeyManagementServiceCustomKeyStores service-
linked role from your AWS account. If you have deleted all of your custom key stores (p. 190) and do
not plan to create any new ones, you no longer need this service-linked role. AWS KMS does not assume
this role or use its permissions unless you have active custom key stores. However, there is currently no
procedure for deleting the AWSServiceRoleForKeyManagementServiceCustomKeyStores service-linked
role.

Creating a Custom Key Store
You can create one or several custom key stores (p. 174) in your account. Each custom key store is
associated with one AWS CloudHSM cluster in the same AWS Region. Before you create your custom key
store, you need to assemble the prerequisites (p. 179). Then, before you can use your custom key store,
you must connect it (p. 186) to its AWS CloudHSM cluster.

178

https://docs.aws.amazon.com/cloudhsm/latest/APIReference/API_DescribeClusters.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_AuthorizeSecurityGroupIngress.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_CreateNetworkInterface.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_CreateSecurityGroup.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DeleteSecurityGroup.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeSecurityGroups.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_RevokeSecurityGroupEgress.html
https://docs.aws.amazon.com/general/latest/gr/kms.html
https://docs.aws.amazon.com/general/latest/gr/cloudhsm.html
https://docs.aws.amazon.com/general/latest/gr/cloudhsm.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role

AWS Key Management Service Developer Guide
Assemble the Prerequisites

Tip
You do not have to connect your custom key store immediately. You can leave it in a
disconnected state until you are ready to use it. However, to verify that it is configured
properly, you might want to connect it (p. 186), view its connection status (p. 182), and then
disconnect it (p. 186).

Topics
• Assemble the Prerequisites (p. 179)
• Create a Custom Key Store (Console) (p. 180)
• Create a Custom Key Store (API) (p. 181)

Assemble the Prerequisites
Each AWS KMS custom key store is backed by an AWS CloudHSM cluster. To create a custom key store,
you must specify an active AWS CloudHSM cluster that is not already associated with another key store.
You also need to create a dedicated crypto user (CU) in the cluster's HSMs that AWS KMS can use to
create and manage keys on your behalf.

Before you create a custom key store, do the following:

Select an AWS CloudHSM Cluster

Every custom key store is associated with exactly one AWS CloudHSM cluster (p. 175). When you
create a customer master key (p. 2) (CMK) in your custom key store, AWS KMS creates the CMK
metadata, such as an ID and Amazon Resource Name (ARN) in AWS KMS. It then creates the key
material in the HSMs of the associated cluster. You can create a new AWS CloudHSM cluster or use
an existing one. AWS KMS does not require exclusive access to the cluster.

The AWS CloudHSM cluster that you select is permanently associated with the custom key store.
After you create the custom key store, you can change the cluster ID (p. 184) of the associated
cluster, but the cluster that you specify must share a backup history with the original cluster. To use
an unrelated cluster, you need to create a new custom key store.

The AWS CloudHSM cluster that you select must have the following characteristics:
• The cluster must be active.

You must create the cluster, initialize it, install the AWS CloudHSM client software for your
platform, and then activate the cluster. For detailed instructions, see the Getting Started section
of the AWS CloudHSM User Guide.

• The cluster must be in the same account and Region as the AWS KMS custom key store. You

cannot associate a custom key store in one region with a cluster in a different region. To create a
multi-region key infrastructure, you must create key stores and clusters in each region.

• The cluster cannot be associated with another custom key store in the account. Each custom

key store must be associated with a different AWS CloudHSM cluster. You cannot specify a cluster
that is already associated with a custom key store or a cluster that shares a backup history with
an associated cluster. Clusters that share a backup history have the same cluster certificate. To
view the cluster certificate of a cluster, use the AWS CloudHSM console or the DescribeClusters
operation.

• The cluster must be configured with private subnets in at least two Availability Zones in the

Region. Because AWS CloudHSM is not supported in all Availability Zones, we recommend that you

179

https://docs.aws.amazon.com/cloudhsm/latest/userguide/getting-started.html
https://docs.aws.amazon.com/cloudhsm/latest/userguide/getting-started.html
https://docs.aws.amazon.com/cloudhsm/latest/APIReference/API_DescribeClusters.html

AWS Key Management Service Developer Guide
Create a Custom Key Store (Console)

create private subnets in all Availability Zones in the region. You cannot reconfigure the subnets
for an existing cluster, but you can create a cluster from a backup with different subnets in the
cluster configuration.

• The security group for the cluster (cloudhsm-cluster-<cluster-id>-sg) must include inbound
rules and outbound rules that allow TCP traffic on ports 2223-2225. The Source in the inbound
rules and the Destination in the outbound rules must match the security group ID. These rules are
set by default when you create the cluster. Do not delete or change them.

• The cluster must contain at least two active HSMs in different Availability Zones. To verify the
number of HSMs, use the AWS CloudHSM console or the DescribeClusters operation. If necessary,
you can add an HSM.

Find the Trust Anchor Certificate

When you create a custom key store, you must upload the trust anchor certificate for the AWS
CloudHSM cluster to AWS KMS. AWS KMS needs the trust anchor certificate to connect the custom
key store to the cluster.

Every active AWS CloudHSM cluster has a trust anchor certificate. When you initialize the cluster, you
generate this certificate, save it in the customerCA.crt file, and copy it to hosts that connect to
the cluster.

Create the kmsuser Crypto User for AWS KMS

To administer your custom key store, AWS KMS logs into the kmsuser crypto user (p. 175) (CU)
account in the selected cluster. Before you create your custom key store, you must create the
kmsuser CU. Then when you create your custom key store, you provide the password for kmsuser
to AWS KMS. AWS KMS rotates the kmsuser password whenever you connect the custom key store
to its associated AWS CloudHSM cluster.

Important
Do not specify the 2FA option when you create the kmsuser CU. If you do, AWS KMS
cannot log in and your custom key store cannot be connected to this AWS CloudHSM
cluster. Once you specify 2FA, you cannot undo it. Instead, you must delete the CU and
recreate it.

To create the kmsuser CU, use the following procedure.

1. Start cloudhsm_mgmt_util as described in the Prepare to run cloudhsm_mgmt_util section of
the AWS CloudHSM User Guide.

2. Use the createUser command in cloudhsm_mgmt_util to create a CU named kmsuser. The
password must consist of 7-32 alphanumeric characters. It is case-sensitive and cannot contain
any special characters.

For example, the following example command creates a kmsuser CU with a password of
kmsPswd.

aws-cloudhsm> createUser CU kmsuser kmsPswd

Create a Custom Key Store (Console)
When you create a custom key store (p. 174) in the AWS Management Console, you can add and create
the prerequisites (p. 179) as part of your workflow. However, the process is quicker when you have
assembled them in advance.

180

https://docs.aws.amazon.com/cloudhsm/latest/userguide/create-cluster-from-backup.html
https://docs.aws.amazon.com/cloudhsm/latest/userguide/configure-sg.html
https://docs.aws.amazon.com/cloudhsm/latest/APIReference/API_DescribeClusters.html
https://docs.aws.amazon.com/cloudhsm/latest/userguide/add-remove-hsm.html#add-hsm
https://docs.aws.amazon.com/cloudhsm/latest/userguide/initialize-cluster.html#sign-csr
https://docs.aws.amazon.com/cloudhsm/latest/userguide/cloudhsm_mgmt_util-getting-started.html#cloudhsm_mgmt_util-setup
https://docs.aws.amazon.com/cloudhsm/latest/userguide/cloudhsm_mgmt_util-createUser.html

AWS Key Management Service Developer Guide
Create a Custom Key Store (API)

1. Sign in to the AWS Management Console and open the AWS Key Management Service (AWS KMS)
console at https://console.aws.amazon.com/kms.

2. To change the AWS Region, use the Region selector in the upper-right corner of the page.

3. In the navigation pane, choose Custom key stores.

4. Choose Create key store.

5. Enter a friendly name for the custom key store. The name must be unique in the account.

6. Select an AWS CloudHSM cluster (p. 175) for the custom key store. Or, to create a new AWS
CloudHSM cluster, choose the Create an AWS CloudHSM cluster link.

The cluster must fulfill the requirements (p. 179) for association with a custom key store. The
menu displays custom key stores in your account and region that are not already associated with a
custom key store.

7. Choose Upload file, and then upload the trust anchor certificate for the AWS CloudHSM cluster that
you chose. This is the customerCA.crt file that you created when you initialized the cluster.

8. Enter the password of the kmsuser crypto user (p. 175) (CU) that you created in the selected
cluster.

9. Choose Create.

When the procedure is successful, the new custom key store appears in the list of custom key stores in
the account and Region. If it is unsuccessful, an error message appears that describes the problem and
provides help on how to fix it. If you need more help, see Troubleshooting a Custom Key Store (p. 202).

Next: New custom key stores are not automatically connected. Before you can create customer master
keys (CMKs) in the custom key store, you must connect the custom key store (p. 186) to its associated
AWS CloudHSM cluster.

Create a Custom Key Store (API)
The CreateCustomKeyStore operation creates a new custom key store (p. 174) that is associated with
an AWS CloudHSM cluster in the account and Region. These examples use the AWS Command Line
Interface (AWS CLI), but you can use any supported programming language.

The CreateCustomKeyStore operation requires the following parameter values.

• CustomKeyStoreName – A friendly name for the custom key store that is unique in the account.

• CloudHsmClusterId – The cluster ID of a cluster that fulfills the requirements (p. 179) for association
with a custom key store.

• KeyStorePassword – The password of kmsuser CU account in the specified cluster.

• TrustAnchorCertificate – The content of the customerCA.crt file that you created when you
initialized the cluster.

The following example uses a fictitious cluster ID. Before running the command, replace it with a valid
cluster ID.

$ aws kms create-custom-key-store
 --custom-key-store-name ExampleKeyStore \
 --cloud-hsm-cluster-id cluster-1a23b4cdefg \
 --key-store-password kmsPswd \
 --trust-anchor-certificate <certificate-goes-here>

If you are using the AWS CLI, you can specify the trust anchor certificate file, instead of its contents. In
the following example, the customerCA.crt file is in the root directory.

181

https://console.aws.amazon.com/kms
https://docs.aws.amazon.com/cloudhsm/latest/userguide/initialize-cluster.html#sign-csr
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateCustomKeyStore.html
https://docs.aws.amazon.com/cloudhsm/latest/userguide/initialize-cluster.html

AWS Key Management Service Developer Guide
Managing a Custom Key Store

$ aws kms create-custom-key-store
 --custom-key-store-name ExampleKeyStore \
 --cloud-hsm-cluster-id cluster-1a23b4cdefg \
 --key-store-password kmsPswd \
 --trust-anchor-certificate file://customerCA.crt

When the operation is successful, CreateCustomKeyStore returns the custom key store ID, as shown in
the following example response.

{
 "CustomKeyStoreId": cks-1234567890abcdef0
}

If the operation fails, correct the error indicated by the exception, and try again. For additional help, see
Troubleshooting a Custom Key Store (p. 202).

Next, to use the custom key store, connect it to its AWS CloudHSM cluster (p. 186).

Managing a Custom Key Store
Using the AWS Management Console and the AWS KMS API, you can manage a custom key store.
For example, you can view a custom key store, edit its properties, connect and disconnect it from its
associated AWS CloudHSM cluster, and delete the custom key store.

Topics
• Viewing a Custom Key Store (p. 182)
• Editing Custom Key Store Settings (p. 184)
• Connecting and Disconnecting a Custom Key Store (p. 186)
• Deleting a Custom Key Store (p. 190)

Viewing a Custom Key Store
You can view the custom key stores in each account and region by using the AWS Management Console
or the AWS KMS API.

For help with viewing the CMKs in your custom key store, see Viewing CMKs in a Custom Key
Store (p. 196).

Topics
• View a Custom Key Store (Console) (p. 182)
• View a Custom Key Store (API) (p. 183)

View a Custom Key Store (Console)
When you view the custom key stores in the AWS Management Console, you can see the following:

• The custom key store name
• The ID of associated AWS CloudHSM cluster
• The number of HSMs in the cluster
• The current connection status

182

AWS Key Management Service Developer Guide
Viewing a Custom Key Store

A connection status of Disconnected indicates that the custom key store is new and has never been
connected, or it was intentionally disconnected from its AWS CloudHSM cluster (p. 186). However, if
your attempts to use a CMK in a connected custom key store fail, that might indicate a problem with the
custom key store or its AWS CloudHSM cluster. For help, see How to Fix a Failing CMK (p. 203).

To view the custom key stores in a given account and Region, use the following procedure.

1. Sign in to the AWS Management Console and open the AWS Key Management Service (AWS KMS)
console at https://console.aws.amazon.com/kms.

2. To change the AWS Region, use the Region selector in the upper-right corner of the page.

3. In the navigation pane, choose Custom key stores.

To customize the display, click the gear icon that appears below the Create key store button.

View a Custom Key Store (API)
To view your custom key stores, use the DescribeCustomKeyStores operation. By default, this operation
returns all custom key stores in the account and Region. But you can use either the CustomKeyStoreId
or CustomKeyStoreName parameter (but not both) to limit the output to a particular custom key
store. The output consists of the custom key store ID and name, the ID of the associated AWS CloudHSM
cluster, and the connection state. If the connection state indicates an error, the output also includes an
error code that describes the reason for the error.

The examples in this section use the AWS Command Line Interface (AWS CLI), but you can use any
supported programming language.

For example, the following command returns all custom key stores in the account and Region. You can
use the Limit and Marker parameters to page through the custom key stores in the output.

$ aws kms describe-custom-key-stores

The following example command uses the CustomKeyStoreName parameter to get only the custom
key store with the ExampleKeyStore friendly name. You can use either the CustomKeyStoreName or
CustomKeyStoreId parameter (but not both) in each command.

The following example output represents a custom key store that is connected to its AWS CloudHSM
cluster. The ConnectionState element corresponds to the Status field in the console.

$ aws kms describe-custom-key-stores --custom-key-store-name ExampleKeyStore
{
 "CustomKeyStores": [
 {
 "CloudHsmClusterId": "cluster-1a23b4cdefg",
 "ConnectionState": "CONNECTED",
 "CreationDate": "1.499288695918E9",
 "CustomKeyStoreId": "cks-1234567890abcdef0",
 "CustomKeyStoreName": "ExampleKeyStore",
 "TrustAnchorCertificate": "<certificate appears here>"
 }
]
}

A ConnectionState of Disconnected indicates that a custom key store has never been connected or
it was intentionally disconnected from its AWS CloudHSM cluster (p. 186). However, if attempts to use
a CMK in a connected custom key store fail, that might indicate a problem with the custom key store or
its AWS CloudHSM cluster. For help, see How to Fix a Failing CMK (p. 203).

183

https://console.aws.amazon.com/kms
https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeCustomKeyStores.html
https://aws.amazon.com/cli/

AWS Key Management Service Developer Guide
Editing Custom Key Store Settings

If the ConnectionState of the custom key store is FAILED, the DescribeCustomKeyStores
response includes a ConnectionErrorCode element that explains the reason for the error.

For example, in the following output, the INVALID_CREDENTIALS value indicates that the custom key
store connection failed because the kmsuser password is invalid (p. 205). For help with this and other
connection error failures, see Troubleshooting a Custom Key Store (p. 202).

$ aws kms describe-custom-key-stores --custom-key-store-id cks-1234567890abcdef0
{
 "CustomKeyStores": [
 {
 "CloudHsmClusterId": "cluster-1a23b4cdefg",
 "ConnectionErrorCode": "INVALID_CREDENTIALS"
 "ConnectionState": "FAILED",
 "CustomKeyStoreId": "cks-1234567890abcdef0",
 "CustomKeyStoreName": "ExampleKeyStore",
 "CreationDate": "1.499288695918E9",
 "TrustAnchorCertificate": "<certificate appears here>"
 }
]
}

Editing Custom Key Store Settings
You can change the settings of an existing custom key store (p. 174). The custom key store must be
disconnected from its AWS CloudHSM cluster.

To edit custom key store settings:

1. Disconnect the custom key store (p. 186) from its AWS CloudHSM cluster. While the custom key store
is disconnected, you cannot create customer master keys (p. 2) (CMKs) in the custom key store and you
cannot use the CMKs it contains for cryptographic operations.

2. Edit one or more of the custom key store settings.
3. Reconnect the custom key store (p. 186) to its AWS CloudHSM cluster.

You can edit the following settings in a custom key store:

The friendly name of the custom key store.

Enter a new friendly name. The new name must be unique in your AWS account.
The cluster ID of the associated AWS CloudHSM cluster.

Edit this value to substitute a related AWS CloudHSM cluster for the original one. You can use this
feature to repair a custom key store if its AWS CloudHSM cluster becomes corrupted or is deleted.

Specify an AWS CloudHSM cluster that shares a backup history with the original cluster and fulfills
the requirements (p. 179) for association with a custom key store, including two active HSMs in
different Availability Zones. Clusters that share a backup history have the same cluster certificate. To
view the cluster certificate of a cluster, use the DescribeClusters operation. You cannot use the edit
feature to associate the custom key store with an unrelated AWS CloudHSM cluster.

The current password of the kmsuser crypto user (p. 175) (CU).

Tells AWS KMS the current password of the kmsuser CU in the AWS CloudHSM cluster. This action
does not change the password of the kmsuser CU in the AWS CloudHSM cluster.

If you change the password of the kmsuser CU in the AWS CloudHSM cluster, use this feature to
tell AWS KMS the new kmsuser password. Otherwise, AWS KMS cannot log into the cluster and all
attempts to connect the custom key store to the cluster fail.

184

https://docs.aws.amazon.com/cloudhsm/latest/APIReference/API_DescribeClusters.html

AWS Key Management Service Developer Guide
Editing Custom Key Store Settings

Topics
• Edit a Custom Key Store (Console) (p. 185)
• Edit a Custom Key Store (API) (p. 185)

Edit a Custom Key Store (Console)
When you edit the custom key store, you can change any or of the configurable values.

1. Sign in to the AWS Management Console and open the AWS Key Management Service (AWS KMS)
console at https://console.aws.amazon.com/kms.

2. To change the AWS Region, use the Region selector in the upper-right corner of the page.
3. In the navigation pane, choose Custom key stores.
4. Choose the custom key store you want to edit.
5. If the value in the Status column is not DISCONNECTED, you must disconnect the custom key store

before you can edit it. From the Key store actions menu, select Disconnect custom key store.
6. From the Key store actions menu, select Edit custom key store settings.
7. Do one or more of the following actions.

• Type a new friendly name for the custom key store.
• Type the cluster ID of a related AWS CloudHSM cluster.
• Type the current password of the kmsuser crypto user in the associated AWS CloudHSM cluster.

8. Choose Save.

When the procedure is successful, a message describes the settings that you edited. When it is
unsuccessful, an error message appears that describes the problem and provides help on how to fix
it. If you need more help, see Troubleshooting a Custom Key Store (p. 202).

9. Reconnect the custom key store. (p. 186)

To use the custom key store, you must reconnect it after editing. You can leave the custom key store
disconnected. But while it is disconnected, you cannot create CMKs in the custom key store or use
the CMKs in the custom key store in cryptographic operations.

Edit a Custom Key Store (API)
To change the properties of a custom key store, use the UpdateCustomKeyStore operation. You can
change multiple properties of a custom key store in the same command. If the operation is successful,
AWS KMS returns an HTTP 200 response and a JSON object with no properties.

The examples in this section use the AWS Command Line Interface (AWS CLI), but you can use any
supported programming language.

Begin by using DisconnectCustomKeyStore to disconnect the custom key store (p. 186) from AWS KMS.
Replace the example custom key store ID, cks-1234567890abcdef0, with an actual ID.

$ aws kms disconnect-custom-key-store --custom-key-store-id cks-1234567890abcdef0

The first example uses UpdateCustomKeyStore to change the friendly name of the custom key store to
DevelopmentKeys. The command uses the CustomKeyStoreId parameter to identify the custom key
store and the CustomKeyStoreName to specify the new name for the custom key store.

$ aws kms update-custom-key-store --custom-key-store-id cks-1234567890abcdef0 --new-custom-
key-store-name DevelopmentKeys

185

https://console.aws.amazon.com/kms
https://docs.aws.amazon.com/kms/latest/APIReference/API_UpdateCustomKeyStore.html
https://aws.amazon.com/cli/
https://docs.aws.amazon.com/kms/latest/APIReference/API_DisconnectCustomKeyStore.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_UpdateCustomKeyStore.html

AWS Key Management Service Developer Guide
Connecting and Disconnecting a Custom Key Store

The following example changes the cluster that is associated with a custom key store to another backup
of the same cluster. The command uses the CustomKeyStoreId parameter to identify the custom key
store and the CloudHsmClusterId parameter to specify the new cluster ID.

$ aws kms update-custom-key-store --custom-key-store-id cks-1234567890abcdef0 --cloud-hsm-
cluster-id cluster-1a23b4cdefg

The following example tells AWS KMS that the current kmsuser password is ExamplePassword.
The command uses the CustomKeyStoreId parameter to identify the custom key store and the
KeyStorePassword parameter to specify the current password.

$ aws kms update-custom-key-store --custom-key-store-id cks-1234567890abcdef0 --key-store-
password ExamplePassword

The final command reconnects the custom key store to AWS KMS. You can leave the custom key store in
the disconnected state, but you must connect it before you can create new CMKs or use existing CMKs for
cryptographic operations. Replace the example custom key store ID with an actual ID.

$ aws kms connect-custom-key-store --custom-key-store-id cks-1234567890abcdef0

Connecting and Disconnecting a Custom Key Store
New custom key stores are not connected. Before you can create and use customer master keys (CMKs) in
your custom key store, you need to connect it to its associated AWS CloudHSM cluster. You can connect
and disconnect your custom key store at any time, and view its connection status (p. 182).

You are not required to connect your custom key store. You can leave a custom key store in a
disconnected state indefinitely and connect it only when you need to use it. However, you might want to
test the connection periodically to verify that the settings are correct and it can be connected.

Note
Custom key stores have a DISCONNECTED status only when the key store has never been
connected or you explicitly disconnect it. If your custom key store status is CONNECTED but
you are having trouble using it, make sure that its associated AWS CloudHSM cluster is active
and contains at least one active HSMs. For help with connection failures, see the section called
“Troubleshooting a Custom Key Store” (p. 202).

Connecting a Custom Key Store

When you connect a custom key store, AWS KMS finds the associated AWS CloudHSM cluster, connects
to it, logs into the AWS CloudHSM client as the kmsuser crypto user (p. 175) (CU), and then rotates the
kmsuser password. AWS KMS remains logged into the AWS CloudHSM client as long as the custom key
store is connected.

To establish the connection, AWS KMS creates a security group named kms-<custom key store ID>
in the virtual private cloud (VPC) of the cluster. The security group has a single rule that allows inbound
traffic from the cluster security group. AWS KMS also creates an elastic network interface (ENI) in each
Availability Zone of the private subnet for the cluster. AWS KMS adds the ENIs to the kms-<cluster
ID> security group and the security group for the cluster. The description of each ENI is KMS managed
ENI for cluster <cluster-ID>.

The connection process can take an extended amount of time to complete; up to 20 minutes.

Before you connect the custom key store, verify that it meets the requirements.

• Its associated AWS CloudHSM cluster must contain at least one active HSM. To find the number
of HSMs in the cluster, view the cluster in the AWS CloudHSM console or use the DescribeClusters
operation. If necessary, you can add an HSM.

186

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_ElasticNetworkInterfaces.html
https://docs.aws.amazon.com/cloudhsm/latest/APIReference/API_DescribeClusters.html
https://docs.aws.amazon.com/cloudhsm/latest/userguide/add-remove-hsm.html

AWS Key Management Service Developer Guide
Connecting and Disconnecting a Custom Key Store

• The cluster must have a kmsuser crypto user (p. 180) (CU) account, but that CU cannot be logged
into the cluster when you connect the custom key store. For help with logging out, see How to Log Out
and Reconnect (p. 209).

• The connection status of the custom key store cannot be DISCONNECTING or FAILED. You can view
the connection status (p. 182) in the console or by using the DescribeCustomKeyStores operation. If
the connection status is FAILED, disconnect the custom key store, and then connect it.

When your custom key store is connected, you can create CMKs in it (p. 192) and use existing CMKs in
cryptographic operations.

Disconnecting a Custom Key Store

When you disconnect a custom key store, AWS KMS logs out of the AWS CloudHSM client, disconnects
from the associated AWS CloudHSM cluster, and removes the network infrastructure that it created to
support the connection.

While a custom key store is disconnected, you can manage the custom key store and its customer master
keys (CMKs), but you cannot create or use CMKs in the custom key store. The status of the key store is
DISCONNECTED and the key state (p. 223) of CMKs in the custom key store is Unavailable, unless
they are PendingDeletion. You can reconnect the custom key store at any time.

Note
While a custom key store is disconnected, all attempts to create customer master keys (CMKs)
in the custom key store or to use existing CMKs in cryptographic operations will fail. This action
can prevent users from storing and accessing sensitive data.

To better estimate the effect of disconnecting your key store, identify the CMKs (p. 199) in the custom
key store and determine their past use (p. 169).

You might disconnect the custom key store for reasons such as the following:

• To rotate of the kmsuser password. AWS KMS changes the kmsuser password each time that it
connects to the AWS CloudHSM cluster. To force a password rotation, just disconnect and reconnect.

• To audit the key material for the CMKs in the AWS CloudHSM cluster. When you disconnect the
custom key store, AWS KMS logs out of the kmsuser crypto user (p. 175) account in the AWS
CloudHSM client. This allows you to log into the cluster as the kmsuser CU and audit and manage the
key material for the CMK.

• To immediately disable all CMKs in the custom key store. You can disable and re-enable CMKs (p. 41)
in a custom key store by using the AWS Management Console or the DisableKey operation. These
operations complete quickly, but they act on one CMK at a time. Disconnecting immediately changes
the key state of all CMKs in the custom key to Unavailable, which prevents them from being used in
any cryptographic operation.

• To repair a failed connection attempt. If an attempt to connect a custom key store fails (the
connection status of the custom key store is FAILED), you must disconnect the custom key store
before you try to connect it again.

Topics

• Connect a Custom Key Store (Console) (p. 188)

• Connect a Custom Key Store (API) (p. 188)

187

https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeCustomKeyStores.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DisableKey.html

AWS Key Management Service Developer Guide
Connecting and Disconnecting a Custom Key Store

• Disconnect a Custom Key Store (Console) (p. 189)

• Disconnect a Custom Key Store (API) (p. 189)

Connect a Custom Key Store (Console)

To connect a custom key store in the AWS Management Console, begin by selecting the custom key store
from the Custom key stores page. The process can take up to 20 minutes to complete.

1. Sign in to the AWS Management Console and open the AWS Key Management Service (AWS KMS)
console at https://console.aws.amazon.com/kms.

2. To change the AWS Region, use the Region selector in the upper-right corner of the page.

3. In the navigation pane, choose Custom key stores.

4. Choose the custom key store you want to connect.

5. If the status of the custom key store is FAILED, you must disconnect the custom key store (p. 189)
before you connect it.

6. From the Key store actions menu, select Connect custom key store.

AWS KMS begins the process of connecting your custom key store. It finds the associated AWS CloudHSM
cluster, builds the required network infrastructure, connects to it, logs into the AWS CloudHSM cluster
as the kmsuser CU, and rotates the kmsuser password. When the operation completes, the connection
state changes to CONNECTED.

If the operation fails, an error message appears that describes the reason for the failure. Before you
try to connect again, view the connection status (p. 182) of your custom key store. If it is FAILED,
you must disconnect the custom key store (p. 189) before you connect it again. If you need help, see
Troubleshooting a Custom Key Store (p. 202).

Next: Create CMKs in a custom key store (p. 192).

Connect a Custom Key Store (API)

To connect a disconnected custom key store, use the ConnectCustomKeyStore operation. The associated
AWS CloudHSM cluster must contain at least one active HSM and the connection status cannot be
FAILED.

The connection process takes an extended amount of time to complete; up to 20 minutes. Unless it fails
quickly, the operation returns an HTTP 200 response and a JSON object with no properties. However, this
initial response does not indicate that the connection was successful. To determine the connection status
of the custom key store, use the DescribeCustomKeyStores operation.

The examples in this section use the AWS Command Line Interface (AWS CLI), but you can use any
supported programming language.

To identify the custom key store, use the custom key store ID. You can find the ID on the Custom key
stores page in the console or by using the DescribeCustomKeyStores operation. Before running this
example, replace the example ID with a valid one.

$ aws kms connect-custom-key-store --custom-key-store-id cks-1234567890abcdef0

To verify that the custom key store is connected, use the DescribeCustomKeyStores operation. By
default, this operation returns all custom keys stores in your account and Region. But you can use either
the CustomKeyStoreId or CustomKeyStoreName parameter (but not both) to limit the response to

188

https://console.aws.amazon.com/kms
https://docs.aws.amazon.com/kms/latest/APIReference/API_ConnectCustomKeyStore.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeCustomKeyStores.html
https://aws.amazon.com/cli/
https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeCustomKeyStores.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeCustomKeyStores.html

AWS Key Management Service Developer Guide
Connecting and Disconnecting a Custom Key Store

particular custom key stores. The ConnectionState value of CONNECTED indicates that the custom key
store is connected to its AWS CloudHSM cluster.

$ aws kms describe-custom-key stores --custom-key-store-id cks-1234567890abcdef0
{
 "CustomKeyStores": [
 "CustomKeyStoreId": "cks-1234567890abcdef0",
 "CustomKeyStoreName": "ExampleKeyStore",
 "CloudHsmClusterId": "cluster-1a23b4cdefg",
 "TrustAnchorCertificate": "<certificate string appears here>",
 "CreationDate": "1.499288695918E9",
 "ConnectionState": "CONNECTED"
],
}

If the ConnectionState value is failed, the ConnectionErrorCode element indicates the reason
for the failure. In this case, AWS KMS could not find an AWS CloudHSM cluster in your account with the
cluster ID cluster-1a23b4cdefg. If you deleted the cluster, you can restore it from a backup of the
original cluster and then edit the cluster ID (p. 184) for the custom key store.

$ aws kms describe-custom-key stores --custom-key-store-id cks-1234567890abcdef0
{
 "CustomKeyStores": [
 "CustomKeyStoreId": "cks-1234567890abcdef0",
 "CustomKeyStoreName": "ExampleKeyStore",
 "CloudHsmClusterId": "cluster-1a23b4cdefg",
 "TrustAnchorCertificate": "<certificate string appears here>",
 "CreationDate": "1.499288695918E9",
 "ConnectionState": "FAILED"
 "ConnectionErrorCode": "CLUSTER_NOT_FOUND"
],
}

Next: Create CMKs in a custom key store (p. 192).

Disconnect a Custom Key Store (Console)

To disconnect a connected custom key store in the AWS Management Console, begin by selecting the
custom key store from the Custom Key Stores page.

1. Sign in to the AWS Management Console and open the AWS Key Management Service (AWS KMS)
console at https://console.aws.amazon.com/kms.

2. To change the AWS Region, use the Region selector in the upper-right corner of the page.

3. In the navigation pane, choose Custom key stores.

4. Choose the custom key store you want to disconnect.

5. From the Key store actions menu, select Disconnect custom key store.

When the operation completes, the connection state changes from DISCONNECTING to
DISCONNECTED. If the operation fails, an error message appears that describes the problem and
provides help on how to fix it. If you need more help, see Troubleshooting a Custom Key Store (p. 202).

Disconnect a Custom Key Store (API)

To disconnect a connected custom key store, use the DisconnectCustomKeyStore operation. If the
operation is successful, AWS KMS returns an HTTP 200 response and a JSON object with no properties.

189

https://docs.aws.amazon.com/cloudhsm/latest/userguide/create-cluster-from-backup.html
https://console.aws.amazon.com/kms
https://docs.aws.amazon.com/kms/latest/APIReference/API_DisconnectCustomKeyStore.html

AWS Key Management Service Developer Guide
Deleting a Custom Key Store

The examples in this section use the AWS Command Line Interface (AWS CLI), but you can use any
supported programming language.

This example disconnects a custom key store. Before running this example, replace the example ID with a
valid one.

$ aws kms disconnect-custom-key-store --custom-key-store-id cks-1234567890abcdef0

To verify that the custom key store is disconnected, use the DescribeCustomKeyStores operation. By
default, this operation returns all custom keys stores in your account and Region. But you can use either
the CustomKeyStoreId and CustomKeyStoreName parameter (but not both) to limit the response to
particular custom key stores. The ConnectionState value of DISCONNECTED indicates that the custom
key store is not connected to its AWS CloudHSM cluster.

$ aws kms describe-custom-key stores --custom-key-store-id cks-1234567890abcdef0
{
 "CustomKeyStores": [
 "CloudHsmClusterId": "cluster-1a23b4cdefg",
 "ConnectionState": "DISCONNECTED",
 "CreationDate": "1.499288695918E9",
 "CustomKeyStoreId": "cks-1234567890abcdef0",
 "CustomKeyStoreName": "ExampleKeyStore",
 "TrustAnchorCertificate": "<certificate string appears here>"
],
}

Deleting a Custom Key Store
When you delete a custom key store, AWS KMS deletes all metadata about the custom key store from
KMS, including information about its association with an AWS CloudHSM cluster. This operation does not
affect the AWS CloudHSM cluster, its HSMs, or its users. You can create a new custom key store that is
associated with the specified cluster, but you cannot undo the delete operation.

You can only delete a custom key store that is disconnected from AWS KMS and does not contain any
customer master keys (CMKs). Before you delete a custom key store, do the following.

• Verify that you will never need to use any of the CMKs in the key store for any cryptographic
operations. Then schedule deletion (p. 202) of all of the CMKs from the key store. For help finding
the CMKs in a custom key store, see Find the CMKs in a Custom Key Store (p. 199).

• Confirm that all CMKs have been deleted. To view the CMKs in a custom key store, see Viewing CMKs in
a Custom Key Store (p. 196).

• Disconnect the custom key store (p. 186) from AWS KMS.

Instead of deleting the custom key store, consider disconnecting it (p. 186) from its associated AWS
CloudHSM cluster. While a custom key store is disconnected, you can manage the custom key store and
its customer master keys (CMKs). But you cannot create or use CMKs in the custom key store. You can
reconnect the custom key store at any time.

If you have deleted all custom key stores from all Regions of your AWS account and you do not plan to
create any more, you should delete the service-linked role (p. 177) that AWS KMS uses for custom key
stores.

Topics

• Delete a Custom Key Store (Console) (p. 191)

• Delete a Custom Key Store (API) (p. 191)

190

https://aws.amazon.com/cli/
https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeCustomKeyStores.html

AWS Key Management Service Developer Guide
Deleting a Custom Key Store

Delete a Custom Key Store (Console)
To delete a custom key store in the AWS Management Console, begin by selecting the custom key store
from the Custom key stores page.

1. Sign in to the AWS Management Console and open the AWS Key Management Service (AWS KMS)
console at https://console.aws.amazon.com/kms.

2. To change the AWS Region, use the Region selector in the upper-right corner of the page.

3. In the navigation pane, choose Custom key stores.

4. Find the row that represents the custom key store that you want to remove. If the status of the
custom key store is not DISCONNECTED, you must disconnect the custom key store (p. 186) before
you delete the custom key store.

5. From the Key store actions menu, select Delete custom key store.

When the operation completes, a success message appears and the custom key store no longer appears
in the custom key store list. If the operation is unsuccessful, an error message appears that describes the
problem and provides help on how to fix it. If you need more help, see Troubleshooting a Custom Key
Store (p. 202).

Delete a Custom Key Store (API)
To delete a custom key store, use the DeleteCustomKeyStore operation. If the operation is successful,
AWS KMS returns an HTTP 200 response and a JSON object with no properties.

To begin, verify that the custom key store does not contain any AWS KMS customer master keys
(CMKs). You cannot delete a custom key store that contains CMKs. The first example command uses
ListKeys and DescribeKey to search for AWS KMS customer master keys in the custom key store with the
cks-1234567890abcdef0 fictitious key store ID. In this case, the command does not return any CMKs.
If it does, use the ScheduleKeyDeletion operation to schedule deletion of each of the CMKs.

Bash

for key in $(aws kms list-keys --query 'Keys[*].KeyId' --output text) ;
do aws kms describe-key --key-id $key |
grep '"CustomKeyStoreId": "cks-1234567890abcdef0"' --context 100; done

PowerShell

PS C:\> (Get-KMSKeyList).KeyArn | foreach {Get-KMSKey -KeyId $_} | where
 CustomKeyStoreId -eq 'cks-1234567890abcdef0'

Next, disconnect the custom key store. This example command uses the DisconnectCustomKeyStore
operation to disconnect the custom key store from its AWS CloudHSM cluster. Before running this
command, replace the example custom key store ID with a valid one.

Bash

$ aws kms disconnect-custom-key-store --custom-key-store-id cks-1234567890abcdef0

PowerShell

PS C:\> Disconnect-KMSCustomKeyStore -CustomKeyStoreId cks-1234567890abcdef0

191

https://console.aws.amazon.com/kms
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeleteCustomKeyStore.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ListKeys.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ScheduleKeyDeletion.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DisconnectCustomKeyStore.html

AWS Key Management Service Developer Guide
Managing CMKs in a Custom Key Store

After the custom key store is disconnected, you can use the DeleteCustomKeyStore operation to delete
it.

Bash

$ aws kms delete-custom-key-store --custom-key-store-id cks-1234567890abcdef0

PowerShell

PS C:\> Remove-KMSCustomKeyStore -CustomKeyStoreId cks-1234567890abcdef0

Managing CMKs in a Custom Key Store
You can create, view, manage, use, and schedule deletion of the customer master keys (CMKs) in a
custom key store. The procedures that you use are very similar to those that you use for CMKs in AWS
KMS. The only difference is that you specify a custom key store when you create the CMK. Then, AWS
KMS creates non-extractable key material for the CMK in the AWS CloudHSM cluster that is associated
with the custom key store. When you use a CMK in a custom key store, the cryptographic operations are
performed in the HSMs in the cluster.

In addition to the procedures discussed in this section, you can do the following with CMKs in a custom
key store:

• Use key policies, IAM policies, and grants to authorize access (p. 46) to the CMK.
• Assign tags (p. 39) to the CMKs and create aliases (p. 344) that refer to the CMKs.
• Use the CMKs for cryptographic operations, including encrypting, decrypting, re-encrypting, and

generating data keys. For details, see AWS Key Management Service API Reference.
• Use the CMKs with AWS services that integrate with AWS KMS (p. 228) and support customer

managed CMKs.
• Track your CMK use in AWS CloudTrail logs (p. 293) and Amazon CloudWatch monitoring

tools (p. 286).

However, you cannot import key material into a CMK in a custom key store.

Topics
• Creating CMKs in a Custom Key Store (p. 192)
• Viewing CMKs in a Custom Key Store (p. 196)
• Using CMKs in a Custom Key Store (p. 197)
• Finding CMKs and Key Material (p. 198)
• Scheduling Deletion of CMKs from a Custom Key Store (p. 202)

Creating CMKs in a Custom Key Store
After you have created a custom key store, you can create customer master keys (p. 2) (CMKs) in your key
store. Then you can use and manage these CMKs very much like you would use any CMK in AWS KMS. For
example, you can do any of the following:

• Create aliases that point to the CMKs.
• Set IAM and key policies on the CMKs.
• Enable and disable the CMKs.
• Schedule deletions of the CMKs.

192

https://docs.aws.amazon.com/kms/latest/APIReference/API_DeleteCustomKeyStore.html
https://docs.aws.amazon.com/kms/latest/APIReference/

AWS Key Management Service Developer Guide
Creating CMKs in a Custom Key Store

• Use the CMKs for cryptographic operations.

To create a CMK in a custom key store, the custom key store must be connected to its associated
AWS CloudHSM cluster (p. 186) and the cluster must contain at least two active HSMs in different
Availability Zones. To find the connection status and number of HSMs, view the custom key
stores page (p. 182) in the AWS Management Console. When using the API operations, use the
DescribeCustomKeyStores operation to verify that the custom key store is connected. Use the AWS
CloudHSM DescribeClusters operation to get the number of active HSMs in the cluster and their
Availability Zones.

When you create a CMK in your custom key store, AWS KMS creates the CMK in AWS KMS. But, it creates
the key material for the CMK in the associated AWS CloudHSM cluster. Specifically, AWS KMS signs into
the cluster as the kmsuser CU that you created (p. 179). Then it creates a persistent, non-extractable,
256-bit Advanced Encryption Standard (AES) symmetric key in the cluster. AWS KMS sets the value of the
key label attribute, which is visible only in the cluster, to Amazon Resource Name (ARN) of the CMK.

When the command succeeds, the key state (p. 223) of the new CMK is Enabled and its origin is
AWS_CLOUDHSM. You cannot change the origin of any CMK after you create it. When you view a CMK in
a custom key store in the console or by using the DescribeKey operation, you can see typical properties,
like its key ID, key state, and creation date. But you can also see the custom key store ID and (optionally)
the AWS CloudHSM cluster ID. For details, see Viewing CMKs in a Custom Key Store (p. 196).

If your attempt to create a CMK in your custom key store fails, use the error message
to help you determine the cause. It might indicate that the custom key store is not
connected (CustomKeyStoreInvalidStateException) or the associated AWS
CloudHSM cluster doesn't have the two active HSMs that are required for this operation
(CloudHsmClusterInvalidConfigurationException). For help see Troubleshooting a Custom Key
Store (p. 202).

Topics
• Create a CMK in a Custom Key Store (Console) (p. 193)
• Create a CMK in a Custom Key Store (API) (p. 194)

Create a CMK in a Custom Key Store (Console)
Use the following procedure to create a customer master key (CMK) in a custom key store.

1. Sign in to the AWS Management Console and open the AWS Key Management Service (AWS KMS)
console at https://console.aws.amazon.com/kms.

2. To change the AWS Region, use the Region selector in the upper-right corner of the page.
3. In the navigation pane, choose Customer managed keys.
4. Choose Create key.
5. Choose Symmetric.

You cannot create an asymmetric CMK in a custom key store.

Note
Asymmetric CMKs and asymmetric data key pairs are supported by AWS KMS only in the
following AWS Regions: US East (N. Virginia), US West (Oregon), Asia Pacific (Sydney), Asia
Pacific (Tokyo), and Europe (Ireland).

6. Choose Advanced options.
7. For Key material origin, choose Custom key store (CloudHSM).
8. Choose Next.
9. Select a custom key store for your new CMK. To create a new custom key store, choose Create

custom key store.

193

https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeCustomKeyStores.html
https://docs.aws.amazon.com/cloudhsm/latest/APIReference/API_DescribeClusters.html
https://docs.aws.amazon.com/cloudhsm/latest/userguide/key-attribute-table.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html
https://console.aws.amazon.com/kms

AWS Key Management Service Developer Guide
Creating CMKs in a Custom Key Store

The custom key store that you select must have a status of CONNECTED. Its associated AWS
CloudHSM cluster must be active and contain at least two active HSMs in different Availability
Zones.

For help with connecting a custom key store, see Connecting and Disconnecting a Custom Key
Store (p. 186). For help with adding HSMs, see Adding an HSM in the AWS CloudHSM User Guide.

10. Choose Next.

11. Type an alias and an optional description for the CMK.

12. (Optional). On the Add Tags page, add tags that identify or categorize your CMK.

When you add tags to your AWS resources, AWS generates a cost allocation report with usage and
costs aggregated by tags. For information about tagging CMKs, see Tagging Keys (p. 39).

13. Choose Next.

14. In the Key Administrators section, select the IAM users and roles who can manage the CMK. For
more information, see Allows Key Administrators to Administer the CMK (p. 52).

Note
IAM policies can give other IAM users and roles permission to use the CMK.

15. (Optional) To prevent these key administrators from deleting this CMK, clear the box at the bottom
of the page for Allow key administrators to delete this key.

16. Choose Next.

17. In the This account section, select the IAM users and roles in this AWS account who can use the CMK
in cryptographic operations. For more information, see Allows Key Users to Use the CMK (p. 54).

Note
IAM policies can give other IAM users and roles permission to use the CMK.

18. (Optional) You can allow other AWS accounts to use this CMK for cryptographic operations. To do
so, in the Other AWS accounts section at the bottom of the page, choose Add another AWS account
and enter the AWS account identification number of an external account. To add multiple external
accounts, repeat this step.

Note
Administrators of the other AWS accounts must also allow access to the CMK by creating
IAM policies for their users. For more information, see Allowing Users in Other Accounts to
Use a CMK (p. 71).

19. Choose Next.

20. On the Review and edit key policy page, review and edit the policy document for the new CMK.
When you're done, choose Finish.

When the procedure succeeds, the display shows the new CMK in the custom key store that you chose.
When you choose the name or alias of the new CMK, its detail page displays the origin of the CMK
(CloudHSM), the name and ID of the custom key store, and the ID of the AWS CloudHSM cluster. If the
procedure fails, an error message appears that describes the failure.

Tip
To make it easier to identify CMKs in a custom key store, on the Customer managed keys page,
add the Custom key store ID column to the display. Click the gear icon in the upper-right and
select Custom key store ID.

Create a CMK in a Custom Key Store (API)
To create a new customer master key (p. 2) (CMK) in your custom key store, use the CreateKey operation.
Use the CustomKeyStoreId parameter to identify your custom key store and specify an Origin value
of AWS_CLOUDHSM.

194

https://docs.aws.amazon.com/cloudhsm/latest/userguide/add-remove-hsm.html#add-hsm
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateKey.html

AWS Key Management Service Developer Guide
Creating CMKs in a Custom Key Store

You might also want to use the Policy parameter to specify a key policy. You can change the key policy
(PutKeyPolicy) and add optional elements, such as a description and tags at any time.

The examples in this section use the AWS Command Line Interface (AWS CLI), but you can use any
supported programming language.

The following example begins with a call to the DescribeCustomKeyStores operation to verify that the
custom key store is connected to its associated AWS CloudHSM cluster. By default, this operation returns
all custom keys stores in your account and Region. To describe only a particular custom key store, use the
CustomKeyStoreId or CustomKeyStoreName parameter (but not both).

Before running this command, replace the example custom key store ID with a valid ID.

$ aws kms describe-custom-key stores --custom-key-store-id cks-1234567890abcdef0
{
 "CustomKeyStores": [
 "CustomKeyStoreId": "cks-1234567890abcdef0",
 "CustomKeyStoreName": "ExampleKeyStore",
 "CloudHsmClusterId": "cluster-1a23b4cdefg",
 "TrustAnchorCertificate": "<certificate string appears here>",
 "CreationDate": "1.499288695918E9",
 "ConnectionState": "CONNECTED"
],
}

The next example command uses the DescribeClusters operation to verify that the AWS CloudHSM
cluster that is associated with the ExampleKeyStore (cluster-1a23b4cdefg) has at least two active
HSMs. If the cluster has fewer than two HSMs, the CreateKey operation fails.

$ aws cloudhsmv2 describe-clusters
{
 "Clusters": [
 {
 "SubnetMapping": {
 ...
 },
 "CreateTimestamp": 1507133412.351,
 "ClusterId": "cluster-1a23b4cdefg",
 "SecurityGroup": "sg-865af2fb",
 "HsmType": "hsm1.medium",
 "VpcId": "vpc-1a2b3c4d",
 "BackupPolicy": "DEFAULT",
 "Certificates": {
 "ClusterCertificate": "-----BEGIN CERTIFICATE-----\...\n-----END
 CERTIFICATE-----\n"
 },
 "Hsms": [
 {
 "AvailabilityZone": "us-west-2a",
 "EniIp": "10.0.1.11",
 "ClusterId": "cluster-1a23b4cdefg",
 "EniId": "eni-ea8647e1",
 "StateMessage": "HSM created.",
 "SubnetId": "subnet-a6b10bd1",
 "HsmId": "hsm-abcdefghijk",
 "State": "ACTIVE"
 },
 {
 "AvailabilityZone": "us-west-2b",
 "EniIp": "10.0.0.2",
 "ClusterId": "cluster-1a23b4cdefg",
 "EniId": "eni-ea8647e1",

195

https://docs.aws.amazon.com/kms/latest/APIReference/API_PutKeyPolicy.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_TagResource.html
https://aws.amazon.com/cli/
https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeCustomKeyStores.html
https://docs.aws.amazon.com/cloudhsm/latest/APIReference/API_DescribeClusters.html

AWS Key Management Service Developer Guide
Viewing CMKs in a Custom Key Store

 "StateMessage": "HSM created.",
 "SubnetId": "subnet-b6b10bd2",
 "HsmId": "hsm-zyxwvutsrqp",
 "State": "ACTIVE"
 },
],
 "State": "ACTIVE"
 }
]
}

This example command uses the CreateKey operation to create a CMK the custom key store. To create
a CMK in a custom key store, you must provide the ID of the custom key store name and specify an
Origin value of AWS_CLOUDHSM.

The response includes the IDs of the custom key store and the AWS CloudHSM cluster.

Before running this command, replace the example custom key store ID with a valid ID.

$ aws kms create-key --origin AWS_CLOUDHSM --custom-key-store-id cks-1234567890abcdef0
{
 "KeyMetadata": {
 "AWSAccountId": "111122223333",
 "Arn": "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "CreationDate": 1.499288695918E9,
 "Description": "Example key",
 "Enabled": true,
 "KeyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "KeyManager": "CUSTOMER",
 "KeyState": "Enabled",
 "KeyUsage": "ENCRYPT_DECRYPT",
 "Origin": "AWS_CLOUDHSM"
 "CloudHsmClusterId": "cluster-1a23b4cdefg",
 "CustomKeyStoreId": "cks-1234567890abcdef0"
 "CustomerMasterKeySpec": "SYMMETRIC_DEFAULT",
 "EncryptionAlgorithms": [
 "SYMMETRIC_DEFAULT"
]
 }
}

Viewing CMKs in a Custom Key Store
To view the customer master keys (CMKs) in a custom key store, use the same techniques that you would
use to view any AWS KMS customer managed CMKs (p. 2). To learn the basics, see Viewing Keys (p. 22).
To identify the keys in your AWS CloudHSM cluster that serve as key material for your CMK, see Finding
CMKs and Key Material (p. 198).

In the AWS Management Console, the CMKs in your custom key store are displayed along with all other
customer managed CMKs your AWS account and Region.

However, the following values are specific to CMKs in a custom key store.

• The name and ID of the custom key store that stores the CMK.

• The cluster ID of the associated AWS CloudHSM cluster that contains their key material.

• An Origin value of CloudHSM in the AWS Management Console or AWS_CLOUDHSM in API responses.

• The key state (p. 223) value can be Unavailable. For help resolving the status, see How to Fix
Unavailable CMKs (p. 203).

196

https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateKey.html

AWS Key Management Service Developer Guide
Using CMKs in a Custom Key Store

To view the CMKs in a custom key store (Console)

1. Open the AWS KMS console at https://console.aws.amazon.com/kms.

2. To change the AWS Region, use the Region selector in the upper-right corner of the page.

3. In the navigation pane, choose Customer managed keys.

4. In the upper-right corner, choose the gear icon, choose Custom key store ID and Origin, then
choose Confirm.

5. To identify CMKs in any custom key store, look for CMKs with an Origin value of AWS_CLOUDHSM.
To identify CMKs in a particular custom key store, view the values in the Custom key store ID
column.

6. Choose the alias or key ID of a CMK in a custom key store.

This page displays detailed information about the CMK, including its Amazon Resource Name (ARN),
key policy, and tags.

7. Expand Cryptographic configuration.

This section includes information about the CMK's custom key store and cluster.

To view the CMKs in a custom key store (API)

You use the same AWS KMS API operations to view the CMKs in a custom key store that you would use
for any CMK, including ListKeys, DescribeKey, and GetKeyPolicy. For example, the following describe-
key operation in the AWS CLI shows the special fields for a CMK in a custom key store. Before running a
command like this one, replace the example CMK ID with a valid value.

$ aws kms describe-key --key-id 1234abcd-12ab-34cd-56ef-1234567890ab

{
 "KeyMetadata": {
 "AWSAccountId": "111122223333",
 "KeyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "Arn": "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "CreationDate": 1537582718.431,
 "Enabled": true,
 "KeyManager": "CUSTOMER",
 "KeyState": "Enabled",
 "KeyUsage": "ENCRYPT_DECRYPT",
 "Origin": "AWS_CLOUDHSM",
 "CloudHsmClusterId": "cluster-1a23b4cdefg",
 "CustomKeyStoreId": "cks-1234567890abcdef0",
 "Description": "CMK in custom key store"
 "CustomerMasterKeySpec": "SYMMETRIC_DEFAULT",
 "EncryptionAlgorithms": [
 "SYMMETRIC_DEFAULT"
]
 }
}

For help finding the CMKs in a custom key store or identifying the keys in your AWS CloudHSM cluster
that serve as key material for your CMK, see Finding CMKs and Key Material (p. 198).

Using CMKs in a Custom Key Store
After you create CMKs in a custom key store (p. 192), you can use them for cryptographic operations
— Encrypt, Decrypt, GenerateDataKey, GenerateDataKeyWithoutPlaintext, and ReEncrypt — just as you
would for any CMK. In the request, you identify the CMK by its ID or alias; you do not need to specify the

197

https://console.aws.amazon.com/kms
https://docs.aws.amazon.com/kms/latest/APIReference/API_ListKeys.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetKeyPolicy.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html

AWS Key Management Service Developer Guide
Finding CMKs and Key Material

custom key store or AWS CloudHSM cluster. The response includes the same fields that are returned for
any CMK.

However, when you use a CMK in a custom key store, the cryptographic operation is performed entirely
within the AWS CloudHSM cluster that is associated with the custom key store. The operation uses the
key material in the cluster that is associated with the CMK that you chose.

To make this possible, the following conditions are required.

• The key state (p. 223) of the CMK must be Enabled. To find the key state, use the Status field in the
AWS Management Console (p. 196) or the KeyState field in the DescribeKey response.

• The custom key store must be connected to its AWS CloudHSM cluster. Its Status in the AWS
Management Console (p. 182) or ConnectionState in the DescribeCustomKeyStores response
must be CONNECTED.

• The AWS CloudHSM cluster that is associated with the custom key store must contain at least one
active HSM. To find the number of active HSMs in the cluster, use the AWS KMS console (p. 182), the
AWS CloudHSM console, or the DescribeClusters operation.

• The AWS CloudHSM cluster must contain the key material for the CMK. If the key material was deleted
from the cluster, or an HSM was created from a backup that did not include the key material, the
cryptographic operation will fail.

If these conditions are not met, the cryptographic operation fails, and AWS KMS returns a
KMSInvalidStateException exception. Typically, you just need to reconnect the custom key
store (p. 186). For additional help, see How to Fix a Failing CMK (p. 203).

When using the CMKs in a custom key store, be aware that the CMKs in each custom key store share
a per-second quota (p. 357) on requests for cryptographic operations. If you exceed the quota, AWS
KMS returns a ThrottlingException. If the AWS CloudHSM cluster that is associated with the custom
key store is processing numerous commands, including those unrelated to the custom key store, you
might get a ThrottlingException at an even lower rate. If you get a ThrottlingException for any
request, lower your request rate and try the commands again. For details about the request quota for
cryptographic operations in a custom key store, see Custom Key Store Quotas (p. 357).

Finding CMKs and Key Material
If you manage a custom key store, you might need to identify the CMKs in each custom key store. For
example, you might need to do some of the following tasks.

• Track the CMKs in custom key store in AWS CloudTrail logs.
• Predict the effect on CMKs of disconnecting a custom key store.
• Schedule deletion of CMKs before you delete a custom key store.

In addition, you might want to identify the keys in your AWS CloudHSM cluster that serve as key material
for your CMKs. Although AWS KMS manages the CMKs and their key material, you still retain control of
and responsibility for the management of your AWS CloudHSM cluster, its HSMs and backups and the
keys in the HSMs. You might need to identify the keys in order to audit the key material, protect it from
accidental deletion, or delete it from HSMs and cluster backups after deleting the CMK.

All key material for the CMKs in your custom key store is owned by the kmsuser crypto user (p. 175)
(CU). AWS KMS sets the key label attribute, which is viewable only in AWS CloudHSM, to the Amazon
Resource Name (ARN) of the CMK.

To find CMKs and key material, use any of the following techniques.

• Find the CMKs in a Custom Key Store (p. 199) — How to identify the CMKs in one or all of your
custom key stores.

198

https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeCustomKeyStores.html
https://docs.aws.amazon.com/cloudhsm/latest/APIReference/API_DescribeClusters.html

AWS Key Management Service Developer Guide
Finding CMKs and Key Material

• Find All Keys for a Custom Key Store (p. 200) — How to find all keys in your cluster that serve as key
material for the CMKs in your custom key store.

• Find the Key for a CMK (p. 201) — How to find the key in your cluster that serves as key material for
a particular CMK in your custom key store.

• Find the CMK for a Key (p. 200) — How to find the CMK for a particular key in your cluster.

Find the CMKs in a Custom Key Store
If you manage a custom key store, you might need to identify the CMKs in each custom key store. You
can use this information track the CMK operations in AWS CloudTrail logs, predict the effect on CMKs of
disconnecting a custom key store, or schedule deletion of CMKs before you delete a custom key store.

To find the CMKs in a custom key store (Console)

To find the CMKs in a particular custom key store, on the Customer Managed Keys page, view the values
in the Custom Key Store Name or Custom Key Store ID fields. To identify CMKs in any custom key store,
look for CMKs with an Origin value of CloudHSM. To add optional columns to the display, choose the
gear icon in the upper right corner of the page.

To find the CMKs in a custom key store (API)

To find the CMKs in a custom key store, use the ListKeys and DescribeKey operations and then filter
the CustomKeyStoreId value. Before running the examples, replace the fictitious custom key store ID
values with a valid value.

Bash

To find CMKs in a particular custom key store, get all of your CMKs in the account and Region. Then
filter the ID of the custom key store.

for key in $(aws kms list-keys --query 'Keys[*].KeyId' --output text) ;
do aws kms describe-key --key-id $key |
grep '"CustomKeyStoreId": "cks-1234567890abcdef0"' --context 100; done

To get CMKs in any custom key store in the account and Region, search for CustomKeyStoreId
values that begin with cks-.

for key in $(aws kms list-keys --query 'Keys[*].KeyId' --output text) ;
do aws kms describe-key --key-id $key |
grep '"CustomKeyStoreId": "cks-"' --context 100; done

PowerShell

To find CMKs in a particular custom key store, use the Get-KmsKeyList Get-KmsKey cmdlets to get all
of your CMKs in the account and Region. Then filter for the ID of the custom key store.

PS C:\> (Get-KMSKeyList).KeyArn | foreach {Get-KMSKey -KeyId $_} | where
 CustomKeyStoreId -eq 'cks-1234567890abcdef0'

To get CMKs in any custom key store in the account and Region, use the -like comparison operator.
All custom key store identifiers begin with cks-.

PS C:\> (Get-KMSKeyList).KeyArn | foreach {Get-KMSKey -KeyId $_} | where
 CustomKeyStoreId -like 'cks*'

199

https://docs.aws.amazon.com/kms/latest/APIReference/API_ListKeys.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html
https://docs.aws.amazon.com/powershell/latest/reference/items/Get-KMSKeyList.html
https://docs.aws.amazon.com/powershell/latest/reference/items/Get-KMSKey.html

AWS Key Management Service Developer Guide
Finding CMKs and Key Material

Find All Keys for a Custom Key Store
You can identify the keys in your AWS CloudHSM cluster that serve as key material for your custom key
store. To do that, use the findAllKeys command in cloudhsm_mgmt_util to find the key handles of all
keys that kmsuser owns or shares. Unless you have logged in as kmsuser and created keys outside of
AWS KMS, all of the keys that kmsuser owns represent key material for AWS KMS CMKs.

Any crypto officer in the cluster can run this command without disconnecting the custom key store.

1. Start cloudhsm_mgmt_util by using the procedure described in the Prepare to run
cloudhsm_mgmt_util topic.

2. Log into cloudhsm_mgmt_util using a crypto officer (CO) account.
3. Use the listUsers command to find the user ID of the kmsuser crypto user.

In this example, kmsuser has user ID 3.

aws-cloudhsm> listUsers
Users on server 0(10.0.0.1):
Number of users found:3

 User Id User Type User Name MofnPubKey
 LoginFailureCnt 2FA
 1 PCO admin NO 0
 NO
 2 AU app_user NO 0
 NO
 3 CU kmsuser NO 0
 NO

4. Use the findAllKeys command to find the key handles of all keys that kmsuser owns or shares.
Replace the example user ID with the actual user ID of kmsuser in your cluster.

The example output shows that kmsuser owns keys with key handles 8, 9, and 262162 on both
HSMs in the cluster.

aws-cloudhsm> findAllKeys 3 0
Keys on server 0(10.0.0.1):
Number of keys found 3
number of keys matched from start index 0::6
8,9,262162
findAllKeys success on server 0(10.0.0.1)

Keys on server 1(10.0.0.2):
Number of keys found 6
number of keys matched from start index 0::6
8,9,262162
findAllKeys success on server 1(10.0.0.2)

Find the CMK for a Key
If you know the key handle of a key that kmsuser owns in the cluster, you can use the key label to
identify the associated CMK in your custom key store.

When AWS KMS creates the key material for a CMK in your AWS CloudHSM cluster, it writes the Amazon
Resource Name (ARN) of the CMK in the key label. Unless you have changed the label value, you can use
the getAttribute command in key_mgmt_util or cloudhsm_mgmt_util to associate the key with its CMK.

To run this procedure, you need to disconnect the custom key store temporarily so you can log in as the
kmsuser CU.

200

https://docs.aws.amazon.com/cloudhsm/latest/userguide/cloudhsm_mgmt_util-findAllKeys.html
https://docs.aws.amazon.com/cloudhsm/latest/userguide/cloudhsm_mgmt_util-getting-started.html#cloudhsm_mgmt_util-setup
https://docs.aws.amazon.com/cloudhsm/latest/userguide/cloudhsm_mgmt_util-getting-started.html#cloudhsm_mgmt_util-setup
https://docs.aws.amazon.com/cloudhsm/latest/userguide/cloudhsm_mgmt_util-getting-started.html#cloudhsm_mgmt_util-log-in
https://docs.aws.amazon.com/cloudhsm/latest/userguide/cloudhsm_mgmt_util-listUsers.html
https://docs.aws.amazon.com/cloudhsm/latest/userguide/cloudhsm_mgmt_util-findAllKeys.html
https://docs.aws.amazon.com/cloudhsm/latest/userguide/cloudhsm_mgmt_util-getAttribute.html

AWS Key Management Service Developer Guide
Finding CMKs and Key Material

Note
While a custom key store is disconnected, all attempts to create customer master keys (CMKs)
in the custom key store or to use existing CMKs in cryptographic operations will fail. This action
can prevent users from storing and accessing sensitive data.

1. Disconnect the custom key store, if it is not already disconnected., then log into the key_mgmt_util
as kmsuser, as explained in How to Disconnect and Log In (p. 208).

2. Use the getAttribute command in key_mgmt_util or cloudhsm_mgmt_util to get the label
attribute (OBJ_ATTR_LABEL, attribute 3) for a particular key handle.

For example, this command uses getAttribute in cloudhsm_mgmt_util to get the
label attribute (attribute 3) of the key with key handle 262162. The output shows
that key 262162 serves as key material for the CMK with ARN arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab. Before running this
command, replace the example key handle with a valid one.

For a list of key attributes, use the listAttributes command or see the Key Attribute Reference in the
AWS CloudHSM User Guide.

aws-cloudhsm> getAttribute 262162 3

Attribute Value on server 0(10.0.1.10):
OBJ_ATTR_LABEL
arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

Attribute Value on server 1(10.0.1.12):
OBJ_ATTR_EXTRACTABLE
arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

3. Log out of key_mgmt_util or cloudhsm_mgmt_util and reconnect the custom key store as explained
in How to Log Out and Reconnect (p. 209).

Find the Key for a CMK
You can use the CMK ID of a CMK in a custom key store to identify the key in your cluster that serves as
its key material. Then you can use its key handle to identify the key in AWS CloudHSM client commands.

When AWS KMS creates the key material for a CMK in your AWS CloudHSM cluster, it writes the Amazon
Resource Name (ARN) of the CMK in the key label. Unless you have changed the label value, you can
use the findKey command in key_mgmt_util to get the key handle of the key material for the CMK. To
run this procedure, you need to disconnect the custom key store temporarily so you can log in as the
kmsuser CU.

Note
While a custom key store is disconnected, all attempts to create customer master keys (CMKs)
in the custom key store or to use existing CMKs in cryptographic operations will fail. This action
can prevent users from storing and accessing sensitive data.

1. Disconnect the custom key store, if it is not already disconnected, then log into the key_mgmt_util
as kmsuser, as explained in How to Disconnect and Log In (p. 208).

2. Use the findKey command in key_mgmt_util to search for a key with a label that matches the ARN of
a CMK in your custom key store. Replace the example CMK ARN in the value of the -l (lower-case L
for 'label') parameter with a valid CMK ARN.

For example, this command finds the key with a label that matches the example CMK ARN,
arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab.
The example output shows that the key with key handle 262162 has the specified CMK ARN in its
label. You can now use this key handle in other key_mgmt_util commands.

201

https://docs.aws.amazon.com/cloudhsm/latest/userguide/key_mgmt_util-getAttribute.html
https://docs.aws.amazon.com/cloudhsm/latest/userguide/cloudhsm_mgmt_util-getAttribute.html
https://docs.aws.amazon.com/cloudhsm/latest/userguide/cloudhsm_mgmt_util-listAttributes.html
https://docs.aws.amazon.com/cloudhsm/latest/userguide/key-attribute-table.html
https://docs.aws.amazon.com/cloudhsm/latest/userguide/key_mgmt_util-findKey.html
https://docs.aws.amazon.com/cloudhsm/latest/userguide/key_mgmt_util-findKey.html

AWS Key Management Service Developer Guide
Scheduling Deletion of CMKs from a Custom Key Store

Command: findKey -l arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
Total number of keys present 1

 number of keys matched from start index 0::1
262162

 Cluster Error Status
 Node id 1 and err state 0x00000000 : HSM Return: SUCCESS
 Node id 0 and err state 0x00000000 : HSM Return: SUCCESS

 Cfm3FindKey returned: 0x00 : HSM Return: SUCCESS

3. Log out of key_mgmt_util and reconnect the custom key store as explained in How to Log Out and
Reconnect (p. 209).

Scheduling Deletion of CMKs from a Custom Key
Store
When you are certain that you will not need to use a customer master key (CMK) for any cryptographic
operation, you can schedule the deletion of the CMK (p. 160). Use the same procedure that you would
use to schedule the deletion of any CMK from AWS KMS. In addition, keep your custom key store
connected so AWS KMS can delete the corresponding key material from the associated AWS CloudHSM
cluster when the waiting period expires.

Warning
Deleting a CMK is a destructive and potentially dangerous operation that prevents you from
recovering all data encrypted under the CMK. Before scheduling deletion of the CMK, examine
past usage (p. 169) of the CMK and create a Amazon CloudWatch alarm (p. 165) that alerts you
when someone tries to use the CMK while it is pending deletion. Whenever possible, disable the
CMK (p. 41), instead of deleting it.

If you schedule deletion of a CMK from a custom key store, its key state (p. 223) changes to Pending
deletion. The CMK remains in the Pending deletion state throughout the waiting period, even if the
CMK becomes unavailable because you have disconnected the custom key store (p. 186). This allows
you to cancel the deletion of the CMK at any time during the waiting period.

When the waiting period expires, AWS KMS deletes the CMK from AWS KMS. Then AWS KMS makes a
best effort to delete the key material from the associated AWS CloudHSM cluster. If AWS KMS cannot
delete the key material, such as when the key store is disconnected from AWS KMS, you might need to
manually delete the orphaned key material (p. 206) from the cluster.

AWS KMS does not delete the key material from cluster backups. Even if you delete the CMK from
AWS KMS and delete its key material from your AWS CloudHSM cluster, clusters created from backups
might contain the deleted key material. To permanently delete the key material view the creation
date (p. 196) of the CMK. Then delete all cluster backups that might contain the key material.

Troubleshooting a Custom Key Store
Custom key stores are designed to be available and resilient. However, there are some error conditions
that you might have to repair to keep your custom key store operational.

Topics
• How to Fix Unavailable CMKs (p. 203)

202

https://docs.aws.amazon.com/cloudhsm/latest/userguide/delete-restore-backup.html

AWS Key Management Service Developer Guide
How to Fix Unavailable CMKs

• How to Fix a Failing CMK (p. 203)
• How to Fix a Connection Failure (p. 204)
• How to Fix Invalid kmsuser Credentials (p. 205)
• How to Delete Orphaned Key Material (p. 206)
• How to Recover Deleted Key Material for a CMK (p. 207)
• How to Log in as kmsuser (p. 208)

How to Fix Unavailable CMKs
The key state (p. 223) of customer master keys (CMKs) in a custom key store is typically Enabled. Like
all CMKs, the key state changes when you disable the CMKs in a custom key store or schedule them for
deletion. However, unlike other CMKs, the CMKs in a custom key store can also have a key state (p. 223)
of Unavailable.

A key state of Unavailable indicates that the CMK is in a custom key store that was intentionally
disconnected from its AWS CloudHSM cluster (p. 186) and attempts to reconnect it, if any, failed.
While a CMK is unavailable, you can view and manage the CMK, but you cannot use it for cryptographic
operations.

To find the key state of a CMK, on the Customer managed keys page, view the Status field of the CMK.
Or, use the DescribeKey operation and view the KeyState element in the response. For details, see
Viewing Keys (p. 22).

The CMKs in a disconnected custom key store will have a key state of Unavailable or
PendingDeletion. CMKs that are scheduled for deletion from a custom key store have a Pending
Deletion key state, even when the custom key store is disconnected from its AWS CloudHSM cluster.
This allows you to cancel the scheduled key deletion without reconnecting the custom key store.

To fix an unavailable CMK, reconnect the custom key store (p. 186). After the custom key store is
reconnected, the key state of the CMKs in the custom key store is automatically restored to its previous
state, such as Enabled or Disabled. CMKs that are pending deletion remain in the PendingDeletion
state. However, while the problem persists, enabling and disabling an unavailable CMK (p. 41) does not
change its key state. The enable or disable action takes effect only when the key becomes available.

For help with failed connections, see How to Fix a Connection Failure (p. 204).

How to Fix a Failing CMK
Problems with creating and using CMKs in custom key stores can be caused by a problem with your
custom key store, its associated AWS CloudHSM cluster, the CMK, or its key material.

When a custom key store is disconnected from its AWS CloudHSM cluster, the key state of CMKs in the
custom key store is Unavailable. All requests to create CMKs in a disconnected custom key store return
a CustomKeyStoreInvalidStateException exception. All requests to encrypt, decrypt, re-encrypt,
or generate data keys return a KMSInvalidStateException exception. To fix the problem, reconnect
the custom key store (p. 186).

However, your attempts to use a custom key store CMK for cryptographic operations might fail even
when its key state is Enabled and the connection status of the custom key store is Connected. This
might be caused by any of the following conditions.

• The key material for the CMK might have been deleted from the associated AWS CloudHSM cluster. To
investigate, find the key handle (p. 196) of the key material for a CMK and, if necessary, try to recover
the key material (p. 207).

203

https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html

AWS Key Management Service Developer Guide
How to Fix a Connection Failure

• All HSMs were deleted from the AWS CloudHSM cluster that is associated with the custom key store.
To use a CMK in a custom key store in a cryptographic operation, its AWS CloudHSM cluster must
contain at least one active HSM. To verify the number and state of HSMs in an AWS CloudHSM cluster,
use the AWS CloudHSM console or the DescribeClusters operation. To add an HSM to the cluster, use
the AWS CloudHSM console or the CreateHsm operation.

• The AWS CloudHSM cluster associated with the custom key store was deleted. To fix the problem,
create a cluster from a backup that is related to the original cluster, such as a backup of the original
cluster, or a backup that was used to create the original cluster. Then, edit the cluster ID (p. 184)
in the custom key store settings. For instructions, see How to Recover Deleted Key Material for a
CMK (p. 207).

How to Fix a Connection Failure
If you try to connect a custom key store (p. 186) to its AWS CloudHSM cluster, but the operation
fails, the connection status of the custom key store changes to FAILED. To find the status of a custom
key store, view the Status column of the custom key store in the AWS Management Console or the
ConnectionState element the DescribeCustomKeyStores response.

Alternatively, some connection attempts fail quickly due to easily detected cluster configuration errors.
In this case, the Status or ConnectionState is still DISCONNECTED. These failures return an error
message or exception that explains why the attempt failed. Review the exception description and cluster
requirements (p. 179), fix the problem, update the custom key store (p. 184), if necessary, and try to
connect again.

When the connection status is FAILED, run the DescribeCustomKeyStores operation and see the
ConnectionErrorCode element in the response.

Note
When the connection status of a custom key store is FAILED, you must disconnect the custom
key store (p. 186) before attempting to reconnect it. You cannot connect a custom key store
with a FAILED connection status.

• CLUSTER_NOT_FOUND indicates that AWS KMS cannot find an AWS CloudHSM cluster with the
specified cluster ID. This might occur because the wrong cluster ID was provided to an API operation
or the cluster was deleted and not replaced. To fix this error, verify the cluster ID, such as by using the
AWS CloudHSM console or the DescribeClusters operation. If the cluster was deleted, create a cluster
from a recent backup of the original. Then, disconnect the custom key store (p. 186), edit the custom
key store (p. 184) cluster ID setting, and reconnect the custom key store (p. 186) to the cluster.

• INSUFFICIENT_CLOUDHSM_HSMS indicates that the associated AWS CloudHSM cluster does not
contain any HSMs. To connect, the cluster must have at least one HSM. To find the number of HSMs
in the cluster, use the DescribeClusters operation. To resolve this error, add at least one HSM to the
cluster. If you add multiple HSMs, it's best to create them in different Availability Zones.

• INTERNAL_ERROR indicates that AWS KMS could not complete the request due to an internal error.
Retry the request. For ConnectCustomKeyStore requests, disconnect the custom key store before
trying to connect again.

• INVALID_CREDENTIALS indicates that AWS KMS cannot log into the associated AWS CloudHSM
cluster because it doesn't have the correct kmsuser account password. For help with this error, see
How to Fix Invalid kmsuser Credentials (p. 205).

204

https://docs.aws.amazon.com/cloudhsm/latest/userguide/add-remove-hsm.html
https://docs.aws.amazon.com/cloudhsm/latest/APIReference/API_DescribeClusters.html
https://docs.aws.amazon.com/cloudhsm/latest/APIReference/API_CreateHsm.html
https://docs.aws.amazon.com/cloudhsm/latest/userguide/create-cluster-from-backup.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeCustomKeyStores.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ConnectCustomKeyStore.html#API_ConnectCustomKeyStore_Errors
https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeCustomKeyStores.html
https://docs.aws.amazon.com/cloudhsm/latest/APIReference/API_DescribeClusters.html
https://docs.aws.amazon.com/cloudhsm/latest/userguide/create-cluster-from-backup.html
https://docs.aws.amazon.com/cloudhsm/latest/userguide/create-cluster-from-backup.html
https://docs.aws.amazon.com/cloudhsm/latest/APIReference/API_DescribeClusters.html
https://docs.aws.amazon.com/cloudhsm/latest/userguide/create-hsm.html

AWS Key Management Service Developer Guide
How to Fix Invalid kmsuser Credentials

• NETWORK_ERRORS usually indicates transient network issues. Disconnect the custom key
store (p. 186), wait a few minutes, and try to connect again.

• USER_LOCKED_OUT indicates that the kmsuser crypto user (CU) account (p. 175) is locked out of the
associated AWS CloudHSM cluster due to too many failed password attempts. For help with this error,
see How to Fix Invalid kmsuser Credentials (p. 205).

To fix this error, disconnect the custom key store (p. 186) and use the changePswd command in
cloudhsm_mgmt_util to change the kmsuser account password. Then, edit the kmsuser password
setting (p. 184) for the custom key store, and try to connect again. For help, use the procedure
described in the How to Fix Invalid kmsuser Credentials (p. 205) topic.

• USER_LOGGED_IN indicates that the kmsuser CU account is logged into the associated AWS
CloudHSM cluster. This prevents AWS KMS from rotating the kmsuser account password and logging
into the cluster. To fix this error, log the kmsuser CU out of the cluster. If you changed the kmsuser
password to log into the cluster, you must also and update the key store password value for the
custom key store. For help, see How to Log Out and Reconnect (p. 209).

• USER_NOT_FOUND indicates that AWS KMS cannot find a kmsuser CU account in the associated AWS
CloudHSM cluster. To fix this error, create a kmsuser CU account (p. 180) in the cluster, and then
update the key store password value (p. 184) for the custom key store. For help, see How to Fix
Invalid kmsuser Credentials (p. 205).

How to Fix Invalid kmsuser Credentials
When you connect a custom key store (p. 186), AWS KMS logs into the associated AWS CloudHSM
cluster as the kmsuser crypto user (p. 175) (CU). It remains logged in until the custom key store is
disconnected. The DescribeCustomKeyStores response shows a ConnectionState of FAILED and
ConnectionErrorCode value of INVALID_CREDENTIALS, as shown in the following example.

If you disconnect the custom key store and change the kmsuser password, AWS KMS cannot log
into the AWS CloudHSM cluster with the credentials of the kmsuser CU account. As a result, all
attempts to connect the custom key store fail. The DescribeCustomKeyStores response shows a
ConnectionState of FAILED and ConnectionErrorCode value of INVALID_CREDENTIALS, as
shown in the following example.

$ aws kms describe-custom-key-stores --custom-key-store-name ExampleKeyStore
{
 "CustomKeyStores": [
 "CloudHsmClusterId": "cluster-1a23b4cdefg",
 "ConnectionErrorCode": "INVALID_CREDENTIALS"
 "CustomKeyStoreId": "cks-1234567890abcdef0",
 "CustomKeyStoreName": "ExampleKeyStore",
 "TrustAnchorCertificate": "<certificate string appears here>",
 "CreationDate": "1.499288695918E9",
 "ConnectionState": "FAILED"
],
}

Also, after five failed attempts to log into the cluster with an incorrect password, AWS CloudHSM locks
the user account. To log into the cluster, you must change the account password.

205

https://docs.aws.amazon.com/cloudhsm/latest/userguide/cloudhsm_mgmt_util-changePswd.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeCustomKeyStores.html

AWS Key Management Service Developer Guide
How to Delete Orphaned Key Material

If AWS KMS gets a lockout response when it tries to log into the cluster as the kmsuser CU, the
request to connect the custom key store fails. The DescribeCustomKeyStores response includes a
ConnectionState of FAILED and ConnectionErrorCode value of USER_LOCKED_OUT, as shown in
the following example.

$ aws kms describe-custom-key-stores --custom-key-store-name ExampleKeyStore
{
 "CustomKeyStores": [
 "CloudHsmClusterId": "cluster-1a23b4cdefg",
 "ConnectionErrorCode": "USER_LOCKED_OUT"
 "CustomKeyStoreId": "cks-1234567890abcdef0",
 "CustomKeyStoreName": "ExampleKeyStore",
 "TrustAnchorCertificate": "<certificate string appears here>",
 "CreationDate": "1.499288695918E9",
 "ConnectionState": "FAILED"
],
}

To repair any of these conditions, use the following procedure.

1. Disconnect the custom key store (p. 186).
2. Run the DescribeCustomKeyStores operation and view the value of the ConnectionErrorCode

element in the response.

• If the ConnectionErrorCode value is INVALID_CREDENTIALS, determine the current password
for the kmsuser account. If necessary, use the changePswd command in cloudhsm_mgmt_util to
set the password to a known value.

• If the ConnectionErrorCode value is USER_LOCKED_OUT, you must use the changePswd
command in cloudhsm_mgmt_util to change the kmsuser password.

3. Edit the kmsuser password setting (p. 184) so it matches the current kmsuser password in the
cluster. This action tells AWS KMS which password to use to log into the cluster. It does not change
the kmsuser password in the cluster.

4. Connect the custom key store (p. 186).

How to Delete Orphaned Key Material
After scheduling deletion of a CMK from a custom key store, you might need to manually delete the
corresponding key material from the associated cluster.

When you create a CMK in a custom key store, AWS KMS creates the CMK metadata in AWS KMS and
generates the key material in the associated AWS CloudHSM cluster. When you schedule deletion of a
CMK in a custom key store, after the waiting period, AWS KMS deletes the CMK metadata. Then AWS
KMS makes a best effort to delete the corresponding key material from the cluster. AWS KMS does not
attempt to delete key material from cluster backups.

If AWS KMS cannot delete the key material, such as when the custom key store is disconnected, AWS
KMS writes an entry to your AWS CloudTrail logs. The entry includes the CMK ID, the AWS CloudHSM
cluster ID, and the key handle of the key material.

To delete the key material from the associated AWS CloudHSM cluster, use a procedure like the following
one. This example uses the AWS CLI and AWS CloudHSM command line tools, but you can use the AWS
Management Console instead of the CLI.

1. Disconnect the custom key store, if it is not already disconnected, then log into the key_mgmt_util,
as explained in How to Disconnect and Log In (p. 208).

2. Use the deleteKey command in key_mgmt_util to delete the key from the HSMs in the cluster.

206

https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeCustomKeyStores.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeCustomKeyStores.html
https://docs.aws.amazon.com/cloudhsm/latest/userguide/cloudhsm_mgmt_util-changePswd.html
https://docs.aws.amazon.com/cloudhsm/latest/userguide/cloudhsm_mgmt_util-changePswd.html
https://docs.aws.amazon.com/cloudhsm/latest/userguide/key_mgmt_util-deleteKey.html

AWS Key Management Service Developer Guide
How to Recover Deleted Key Material for a CMK

For example, this command deletes key 262162 from the HSMs in the cluster. The key handle is
listed in the CloudTrail log entry.

Command: deleteKey -k 262162

 Cfm3DeleteKey returned: 0x00 : HSM Return: SUCCESS

 Cluster Error Status
 Node id 0 and err state 0x00000000 : HSM Return: SUCCESS
 Node id 1 and err state 0x00000000 : HSM Return: SUCCESS
 Node id 2 and err state 0x00000000 : HSM Return: SUCCESS

3. Log out of key_mgmt_util and reconnect the custom key store as described in How to Log Out and
Reconnect (p. 209).

How to Recover Deleted Key Material for a CMK
If the key material for a customer master key is deleted, the CMK is unusable and all ciphertext that
was encrypted under the CMK cannot be decrypted. This can happen if the key material for a CMK in a
custom key store is deleted from the associated AWS CloudHSM cluster. However, it might be possible to
recover the key material.

When you create a customer master key (CMK) in a custom key store, AWS KMS logs into the associated
AWS CloudHSM cluster and creates the key material for the CMK. It also changes the password to a value
that only it knows and remains logged in as long as the custom key store is connected. Because only the
key owner, that is, the CU who created a key, can delete the key, it is unlikely that the key will be deleted
from the HSMs accidentally.

However, if the key material for a CMK is deleted from the HSMs in a cluster, the CMK key state
eventually changes to UNAVAILABLE. If you attempt to use the CMK for a cryptographic operation,
the operation fails with a KMSInvalidStateException exception. Most importantly, any data that was
encrypted under the CMK cannot be decrypted.

Under certain circumstances, you can recover deleted key material by creating a cluster from a backup
that contains the key material. This strategy works only when at least one backup was created while the
key existed and before it was deleted.

Use the following process to recover the key material.

1. Find a cluster backup that contains the key material. The backup must also contain all users and keys
that you need to support the cluster and its encrypted data.

Use the DescribeBackups operation to list the backups for a cluster. Then use the backup timestamp
to help you select a backup. To limit the output to the cluster that is associated with the custom key
store, use the Filters parameter, as shown in the following example.

$ aws cloudhsmv2 describe-backups --filters clusterIds=<cluster ID>
{
 "Backups": [
 {
 "ClusterId": "cluster-1a23b4cdefg",
 "BackupId": "backup-9g87f6edcba",
 "CreateTimestamp": 1536667238.328,
 "BackupState": "READY"
 },
 ...
]
}

207

https://docs.aws.amazon.com/cloudhsm/latest/userguide/create-cluster-from-backup.html
https://docs.aws.amazon.com/cloudhsm/latest/APIReference/API_DescribeBackups.html

AWS Key Management Service Developer Guide
How to Log in as kmsuser

2. Create a cluster from the selected backup. Verify that the backup contains the deleted key and other
users and keys that the cluster requires.

3. Disconnect the custom key store (p. 186) so you can edit its properties.

4. Edit the cluster ID (p. 184) of the custom key store. Enter the cluster ID of the cluster that you
created from the backup. Because the cluster shares a backup history with the original cluster, the new
cluster ID should be valid.

5. Reconnect the custom key store (p. 186).

How to Log in as kmsuser
To create and manage the key material in the AWS CloudHSM cluster for your custom key store, AWS
KMS uses the kmsuser crypto user (CU) account (p. 175). You create the kmsuser CU account (p. 179)
in your cluster and provide its password to AWS KMS when you create your custom key store.

In general, AWS KMS manages the kmsuser account. However, for some tasks, you need to disconnect
the custom key store, log into the cluster as the kmsuser CU, and use the cloudhsm_mgmt_util and
key_mgmt_util command line tools.

Note
While a custom key store is disconnected, all attempts to create customer master keys (CMKs)
in the custom key store or to use existing CMKs in cryptographic operations will fail. This action
can prevent users from storing and accessing sensitive data.

This topic explains how to disconnect your custom key store and log in (p. 208) as kmsuser, run the
AWS CloudHSM command line tool, and log out and reconnect your custom key store (p. 209).

Topics

• How to Disconnect and Log In (p. 208)

• How to Log Out and Reconnect (p. 209)

How to Disconnect and Log In

Use the following procedure each time to need to log into an associated cluster as the kmsuser CU.

1. Disconnect the custom key store, if it is not already disconnected. You can use the AWS Management
Console or AWS KMS API.

While your custom key is connected, AWS KMS is logged in as the kmsuser. This prevents you from
logging in as kmsuser or changing the kmsuser password.

For example, this command uses DisconnectCustomKeyStore to disconnect an example key store.
Replace the example custom key store ID with a valid one.

$ aws kms disconnect-custom-key-store --custom-key-store-id cks-1234567890abcdef0

2. Start cloudhsm_mgmt_util. Use the procedure described in Prepare to run cloudhsm_mgmt_util
section of the AWS CloudHSM User Guide.

3. Log into cloudhsm_mgmt_util on the AWS CloudHSM cluster as a crypto officer (CO).

For example, this command logs in as a CO named admin. Replace the example CO user name and
password with valid values.

aws-cloudhsm>loginHSM CO admin <password>

208

https://docs.aws.amazon.com/cloudhsm/latest/userguide/create-cluster-from-backup.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DisconnectCustomKeyStore.html
https://docs.aws.amazon.com/cloudhsm/latest/userguide/cloudhsm_mgmt_util-getting-started.html#cloudhsm_mgmt_util-setup
https://docs.aws.amazon.com/cloudhsm/latest/userguide/hsm-users.html#crypto-officer

AWS Key Management Service Developer Guide
How to Log in as kmsuser

loginHSM success on server 0(10.0.2.9)
loginHSM success on server 1(10.0.3.11)
loginHSM success on server 2(10.0.1.12)

4. Use the changePswd command to change the password of the kmsuser account to one that you
know. (AWS KMS rotates the password when you connect your custom key store.) The password
must consist of 7-32 alphanumeric characters. It is case-sensitive and cannot contain any special
characters.

For example, this command changes the kmsuser password to tempPassword.

aws-cloudhsm>changePswd CU kmsuser tempPassword

*************************CAUTION********************************
This is a CRITICAL operation, should be done on all nodes in the
cluster. Cav server does NOT synchronize these changes with the
nodes on which this operation is not executed or failed, please
ensure this operation is executed on all nodes in the cluster.
**

Do you want to continue(y/n)?y
Changing password for kmsuser(CU) on 3 nodes

5. Log into key_mgmt_util or cloudhsm_mgmt_util as kmsuser using the password that you set.
For detailed instructions, see Getting Started with cloudhsm_mgmt_util and Getting Started with
key_mgmt_util. The tool that you use depends on your task.

For example, this command logs into key_mgmt_util.

Command: loginHSM -u CU -s kmsuser -p tempPassword
Cfm3LoginHSM returned: 0x00 : HSM Return: SUCCESS

Cluster Error Status
Node id 0 and err state 0x00000000 : HSM Return: SUCCESS
Node id 1 and err state 0x00000000 : HSM Return: SUCCESS
Node id 2 and err state 0x00000000 : HSM Return: SUCCESS

How to Log Out and Reconnect
1. Perform the task, then log out of the command line tool. If you do not log out, attempts to

reconnect your custom key store will fail.

Command: logoutHSM
Cfm3LogoutHSM returned: 0x00 : HSM Return: SUCCESS

Cluster Error Status
Node id 0 and err state 0x00000000 : HSM Return: SUCCESS
Node id 1 and err state 0x00000000 : HSM Return: SUCCESS

2. Edit the kmsuser password setting (p. 184) for the custom key store.

This tells AWS KMS the current password for kmsuser in the cluster. If you omit this step, AWS KMS
will not be able to log into the cluster as kmsuser, and all attempts to reconnect your custom key
store will fail. You can use the AWS Management Console or the KeyStorePassword parameter of
the UpdateCustomKeyStore operation.

For example, this command tells AWS KMS that the current password is tempPassword. Replace the
example password with the actual one.

209

https://docs.aws.amazon.com/cloudhsm/latest/userguide/cloudhsm_mgmt_util-changePswd.html
https://docs.aws.amazon.com/cloudhsm/latest/userguide/cloudhsm_mgmt_util-getting-started.html
https://docs.aws.amazon.com/cloudhsm/latest/userguide/key_mgmt_util-getting-started.html
https://docs.aws.amazon.com/cloudhsm/latest/userguide/key_mgmt_util-getting-started.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_UpdateCustomKeyStore.html

AWS Key Management Service Developer Guide
How to Log in as kmsuser

$ aws kms update-custom-key-store --custom-key-store-id cks-1234567890abcdef0 --key-
store-password tempPassword

3. Reconnect the custom key store to AWS KMS. Replace the example custom key store ID with a valid
one. During the connection process, AWS KMS changes the kmsuser password to a value that only it
knows.

The ConnectCustomKeyStore operation returns quickly, but the connection process can take an
extended period of time. The initial response does not indicate the success of the connection
process.

$ aws kms connect-custom-key-store --custom-key-store-id cks-1234567890abcdef0

4. Use the DescribeCustomKeyStores operation to verify that the custom key store is connected.
Replace the example custom key store ID with a valid one.

In this example, the connection state field shows that the custom key store is now connected.

$ aws kms describe-custom-key-stores --custom-key-store-
id cks-1234567890abcdef0
{
 "CustomKeyStores": [
 "CustomKeyStoreId": "cks-1234567890abcdef0",
 "CustomKeyStoreName": "ExampleKeyStore",
 "CloudHsmClusterId": "cluster-1a23b4cdefg",
 "TrustAnchorCertificate": "<certificate string appears here>",
 "CreationDate": "1.499288695918E9",
 "ConnectionState": "CONNECTED"
],
}

210

https://docs.aws.amazon.com/kms/latest/APIReference/API_ConnectCustomKeyStore.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeCustomKeyStores.html

AWS Key Management Service Developer Guide

Connecting to AWS KMS Through a
VPC Endpoint

You can connect directly to AWS KMS through a private endpoint in your VPC instead of connecting
over the internet. When you use a VPC endpoint, communication between your VPC and AWS KMS is
conducted entirely within the AWS network.

AWS KMS supports Amazon Virtual Private Cloud (Amazon VPC) interface endpoints that are powered by
AWS PrivateLink. Each VPC endpoint is represented by one or more Elastic Network Interfaces (ENIs) with
private IP addresses in your VPC subnets.

The VPC interface endpoint connects your VPC directly to AWS KMS without an internet gateway, NAT
device, VPN connection, or AWS Direct Connect connection. The instances in your VPC do not need public
IP addresses to communicate with AWS KMS.

You can specify the VPC endpoint in AWS KMS API operations and AWS CLI commands. For example, the
following command uses the endpoint-url parameter to specify a VPC endpoint in an AWS CLI command
to AWS KMS.

$ aws kms list-keys --endpoint-url https://vpce-0295a3caf8414c94a-dfm9tr04.kms.us-
east-1.vpce.amazonaws.com

If you use the default domain name servers (AmazonProvidedDNS) and enable private DNS hostnames
for your VPC endpoint, you do not need to specify the endpoint URL. AWS populates your VPC name
server with private zone data, so the public KMS endpoint (https://kms.<region>.amazonaws.com)
resolves to your private VPC endpoint. To enable this feature when using your own name servers,
forward requests for the KMS domain to the VPC name server.

You can also use AWS CloudTrail logs to audit your use of KMS keys through the VPC endpoint. And you
can use the conditions in IAM and key policies to deny access to any request that does not come from a
specified VPC or VPC endpoint.

Note
Use caution when creating IAM and key policies based on your VPC endpoint. If a policy
statement requires that requests come from a particular VPC or VPC endpoint, requests from
integrated AWS services that use the CMK on your behalf might fail. For help, see Using VPC
Endpoint Conditions in Policies with AWS KMS Permissions (p. 87).

Supported AWS Regions

AWS KMS supports VPC endpoints in all AWS Regions where both Amazon VPC and AWS KMS are
available.

Topics

• Create an AWS KMS VPC Endpoint (p. 212)

• Connecting to an AWS KMS VPC Endpoint (p. 214)

• Using a VPC Endpoint in a Policy Statement (p. 215)

• Audit the CMK Use for your VPC (p. 217)

211

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Introduction.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Introduction.html#what-is-privatelink
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://docs.aws.amazon.com/kms/latest/APIReference/
https://docs.aws.amazon.com/cli/latest/reference/kms/index.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#vpce-private-dns
https://docs.aws.amazon.com/general/latest/gr/vpc-service.html
https://docs.aws.amazon.com/general/latest/gr/kms.html

AWS Key Management Service Developer Guide
Create a VPC Endpoint

Create an AWS KMS VPC Endpoint
You create an interface endpoint in your VPC by using the KMS VPC endpoint service in each region. You
can create a VPC endpoint in the AWS Management Console, or by using the AWS CLI or Amazon EC2
API.

Topics

• Creating an AWS KMS VPC Endpoint (VPC Console) (p. 212)

• Creating an AWS KMS VPC Endpoint (AWS CLI) (p. 213)

Creating an AWS KMS VPC Endpoint (VPC Console)
1. Sign in to the AWS Management Console and open the Amazon VPC console at https://

console.aws.amazon.com/vpc/.

2. On the navigation bar, use the region selector to choose your region.

3. In the navigation pane, choose Endpoints. In the main pane, Create Endpoint.

4. For Service category, choose AWS services.

5. In the Service Name list, choose the entry for AWS KMS interface endpoint in the region. For
example, in the US East (N.Virginia) Region, the entry name is com.amazonaws.us-east-1.kms.

6. For VPC, select a VPC. The endpoint is created in the VPC that you select.

7. For Subnets, choose a subnet from each Availability Zone that you want to include.

The VPC endpoint can span multiple Availability Zones. An elastic network interface (ENI) for the
VPC endpoint is created in each subnet that you choose. Each ENI has a DNS hostname and a private
IP address.

8. In this step, you can enable a private DNS hostname for your VPC endpoint. If you select
the Enable Private DNS Name option, the standard AWS KMS DNS hostname (https://
kms.<region>.amazonaws.com) resolves to your VPC endpoint.

This option makes it easier to use the VPC endpoint. The AWS KMS CLI and SDKs use the standard
AWS KMS DNS hostname by default, so you do not need to specify the VPC endpoint URL in
applications and commands.

This feature works only when the enableDnsHostnames and enableDnsSupport attributes of
your VPC are set to true. To set these attributes, update DNS support for your VPC.

To enable a private DNS hostname, for Enable Private DNS Name, select Enable for this endpoint.

9. For Security group, select or create a security group.

You can use security groups to control access to your endpoint, much like you would use a firewall.

10. Choose Create endpoint.

The results show the VPC endpoint, including the VPC endpoint ID and the DNS names that you use to
connect to your VPC endpoint (p. 214).

You can also use the Amazon VPC tools to view and manage your endpoint, including creating a
notification for an endpoint, changing properties of the endpoint, and deleting the endpoint. For
instructions, see Interface VPC Endpoints.

212

https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint
https://docs.aws.amazon.com/cli/latest/reference/ec2/create-vpc-endpoint.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_CreateVpcEndpoint.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_CreateVpcEndpoint.html
https://console.aws.amazon.com/vpc/
https://console.aws.amazon.com/vpc/
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html#vpc-dns-updating
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html

AWS Key Management Service Developer Guide
Creating an AWS KMS VPC Endpoint (AWS CLI)

Creating an AWS KMS VPC Endpoint (AWS CLI)
You can use the create-vpc-endpoint command in the AWS CLI to create a VPC endpoint that connects to
AWS KMS.

Be sure to use interface as the VPC endpoint type and a service name value that includes kms and the
region where your VPC is located.

The command does not include the PrivateDnsNames parameter because its default value is true.
To disable this option, you can include the parameter with a value of false. Private DNS names are
available only when the enableDnsHostnames and enableDnsSupport attributes of your VPC are set
to true. To set these attributes, use the ModifyVpcAttribute operation.

The following diagram shows the syntax of the command.

aws ec2 create-vpc-endpoint --vpc-id <vpc id> \
 --vpc-endpoint-type Interface \
 --service-name com.amazonaws.<region>.kms \
 --subnet-ids <subnet id> \
 --security-group-id <security group id>

For example, this command creates a VPC endpoint in the VPC with VPC ID vpc-1a2b3c4d, which is in
the us-east-1 region. It specifies just one subnet ID to represent the Availability Zones, but you can
specify many. The security group ID is also required.

213

https://docs.aws.amazon.com/cli/latest/reference/ec2/create-vpc-endpoint.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_ModifyVpcAttribute.html

AWS Key Management Service Developer Guide
Connecting to a VPC Endpoint

The output includes the VPC endpoint ID and DNS names that you use to connect to your new VPC
endpoint.

$ aws ec2 create-vpc-endpoint --vpc-id vpc-1a2b3c4d \
 --vpc-endpoint-type Interface \
 --service-name com.amazonaws.us-west-1.kms \
 --subnet-ids subnet-a6b10bd1 \
 --security-group-id sg-1a2b3c4d

{
 "VpcEndpoint": {
 "PolicyDocument": "{\n \"Statement\": [\n {\n \"Action\": \"*\", \n
 \"Effect\": \"Allow\", \n \"Principal\": \"*\", \n \"Resource\": \"*\"\n }\n
]\n}",
 "VpcId": "vpc-1a2b3c4d",
 "NetworkInterfaceIds": [
 "eni-bf8aa46b"
],
 "SubnetIds": [
 "subnet-a6b10bd1"
],
 "PrivateDnsEnabled": true,
 "State": "pending",
 "ServiceName": "com.amazonaws.us-east-1.kms",
 "RouteTableIds": [],
 "Groups": [
 {
 "GroupName": "default",
 "GroupId": "sg-1a2b3c4d"
 }
],
 "VpcEndpointId": "vpce-0295a3caf8414c94a",
 "VpcEndpointType": "Interface",
 "CreationTimestamp": "2017-09-05T20:14:41.240Z",
 "DnsEntries": [
 {
 "HostedZoneId": "Z7HUB22UULQXV",
 "DnsName": "vpce-0295a3caf8414c94a-dfm9tr04.kms.us-east-1.vpce.amazonaws.com"
 },
 {
 "HostedZoneId": "Z7HUB22UULQXV",
 "DnsName": "vpce-0295a3caf8414c94a-dfm9tr04-us-east-1a.kms.us-
east-1.vpce.amazonaws.com"
 },
 {
 "HostedZoneId": "Z1K56Z6FNPJRR",
 "DnsName": "kms.us-east-1.amazonaws.com"
 }
]
 }
}

Connecting to an AWS KMS VPC Endpoint
You can connect to AWS KMS through the VPC endpoint by using the AWS CLI or an AWS SDK. To specify
the VPC endpoint, use its DNS name.

For example, this list-keys command uses the endpoint-url parameter to specify the VPC endpoint. To
use a command like this, replace the example VPC endpoint ID with one in your account.

214

https://docs.aws.amazon.com/cli/latest/reference/kms/list-keys.html

AWS Key Management Service Developer Guide
Using a VPC Endpoint in a Policy Statement

aws kms list-keys --endpoint-url https://vpce-0295a3caf8414c94a-dfm9tr04.kms.us-
east-1.vpce.amazonaws.com

If you enabled private hostnames when you created your VPC endpoint, you do not need to specify the
VPC endpoint URL in your CLI commands or application configuration. The standard AWS KMS DNS
hostname (https://kms.<region>.amazonaws.com) resolves to your VPC endpoint. The AWS CLI and
SDKs use this hostname by default, so you can begin using the VPC endpoint without changing anything
in your scripts and application.

To use private hostnames, the enableDnsHostnames and enableDnsSupport attributes of your VPC
must be set to true. To set these attributes, use the ModifyVpcAttribute operation.

Using a VPC Endpoint in a Policy Statement
You can use IAM policies and AWS KMS key policies to control access to your AWS KMS customer master
keys (CMKs). You can also use global condition keys to restrict these policies based on VPC endpoint or
VPC in the request.

• Use the aws:sourceVpce condition key to grant or restrict access to an AWS KMS CMK based on the
VPC endpoint.

• Use the aws:sourceVpc condition key to grant or restrict access to an AWS KMS CMK based on the
VPC that hosts the private endpoint.

Note
Use caution when creating IAM and key policies based on your VPC endpoint. If a policy
statement requires that requests come from a particular VPC or VPC endpoint, requests from
integrated AWS services that use the CMK on your behalf might fail. For help, see Using VPC
Endpoint Conditions in Policies with AWS KMS Permissions (p. 87).
Also, the aws:sourceIP condition key is not effective when the request comes from an
Amazon VPC endpoint. To restrict requests to a VPC endpoint, use the aws:sourceVpce or
aws:sourceVpc condition keys. For more information, see VPC Endpoints - Controlling the Use
of Endpoints in the Amazon VPC User Guide.

For example, the following sample key policy allows a user to perform encryption operations with a CMK
only when the request comes through the specified VPC endpoint.

When a user makes a request to AWS KMS, the VPC endpoint ID in the request is compared to the
aws:sourceVpce condition key value in the policy. If they do not match, then the request is denied.

To use a policy like this one, replace the placeholder AWS account ID and VPC endpoint IDs with valid
values for your account.

{
 "Id": "example-key-1",
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Enable IAM user permissions",
 "Effect": "Allow",
 "Principal": {"AWS":["111122223333"]},
 "Action": ["kms:*"],
 "Resource": "*"
 },
 {
 "Sid": "Restrict usage to my VPC endpoint",
 "Effect": "Deny",

215

https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_ModifyVpcAttribute.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#AvailableKeys
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints.html#vpc-endpoints-iam-access
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints.html#vpc-endpoints-iam-access

AWS Key Management Service Developer Guide
Using a VPC Endpoint in a Policy Statement

 "Principal": "*",
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*"
],
 "Resource": "*",
 "Condition": {
 "StringNotEquals": {
 "aws:sourceVpce": "vpce-0295a3caf8414c94a"
 }
 }
 }

]
}

You can also use the aws:sourceVpc condition key to restrict access to your CMKs based on the VPC in
which VPC endpoint resides.

The following sample key policy allows commands that manage the CMK only when they come from
vpc-12345678. In addition, it allows commands that use the CMK for cryptographic operations only
when they come from vpc-2b2b2b2b. You might use a policy like this one if an application is running in
one VPC, but you use a second, isolated VPC for management functions.

To use a policy like this one, replace the placeholder AWS account ID and VPC endpoint IDs with valid
values for your account.

{
 "Id": "example-key-2",
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Allow administrative actions from vpc-12345678",
 "Effect": "Allow",
 "Principal": {"AWS": "111122223333"},
 "Action": [
 "kms:Create*","kms:Enable*","kms:Put*","kms:Update*",
 "kms:Revoke*","kms:Disable*","kms:Delete*",
 "kms:TagResource", "kms:UntagResource"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:sourceVpc": "vpc-12345678"
 }
 }
 },
 {
 "Sid": "Allow key usage from vpc-2b2b2b2b",
 "Effect": "Allow",
 "Principal": {"AWS": "111122223333"},
 "Action": [
 "kms:Encrypt","kms:Decrypt","kms:GenerateDataKey*"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:sourceVpc": "vpc-2b2b2b2b"
 }
 }
 },
 {

216

AWS Key Management Service Developer Guide
Audit the CMK Use for your VPC

 "Sid": "Allow read actions from everywhere",
 "Effect": "Allow",
 "Principal": {"AWS": "111122223333"},
 "Action": [
 "kms:Describe*","kms:List*","kms:Get*"
],
 "Resource": "*",
 }
]
}

Audit the CMK Use for your VPC
When a request to AWS KMS uses a VPC endpoint, the VPC endpoint ID appears in the AWS CloudTrail
log (p. 293) entry that records the request. You can use the endpoint ID to audit the use of your AWS
KMS VPC endpoint.

For example, this sample log entry records a GenerateDataKey request that used the VPC endpoint.
The vpcEndpointId field appears at the end of the log entry.

{
 "eventVersion":"1.05",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "accountId": "111122223333",
 "userName": "Alice"
 },
 "eventTime":"2018-01-16T05:46:57Z",
 "eventSource":"kms.amazonaws.com",
 "eventName":"GenerateDataKey",
 "awsRegion":"eu-west-1",
 "sourceIPAddress":"172.01.01.001",
 "userAgent":"aws-cli/1.14.23 Python/2.7.12 Linux/4.9.75-25.55.amzn1.x86_64
 botocore/1.8.27",
 "requestParameters":{
 "keyId":"1234abcd-12ab-34cd-56ef-1234567890ab",
 "numberOfBytes":128
 },
 "responseElements":null,
 "requestID":"a9fff0bf-fa80-11e7-a13c-afcabff2f04c",
 "eventID":"77274901-88bc-4e3f-9bb6-acf1c16f6a7c",
 "readOnly":true,
 "resources":[{
 "ARN":"arn:aws:kms:eu-west-1:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "accountId":"111122223333",
 "type":"AWS::KMS::Key"
 }],
 "eventType":"AwsApiCall",
 "recipientAccountId":"111122223333",
 "vpcEndpointId": "vpce-0295a3caf8414c94a"
}

217

AWS Key Management Service Developer Guide

Using Hybrid Post-Quantum TLS
with AWS KMS

AWS Key Management Service (AWS KMS) now supports a hybrid post-quantum key exchange option
for the Transport Layer Security (TLS) network encryption protocol. You can use this TLS option when
you connect to KMS API endpoints. We're offering this feature before post-quantum algorithms are
standardized so you can begin testing the effect of these key exchange protocols on AWS KMS calls.
These optional hybrid post-quantum key exchange features are at least as secure as the TLS encryption
we use today and are likely to provide additional security benefits. However, they affect latency and
throughput compared to the classic key exchange protocols in use today.

The data that you send to AWS Key Management Service (AWS KMS) is protected in transit by the
encryption provided by a Transport Layer Security (TLS) connection. The classic cipher suites that AWS
KMS supports for TLS sessions make brute force attacks on the key exchange mechanisms infeasible
with current technology. However, if large-scale quantum computing becomes practical in the future,
the classic cipher suites used in TLS key exchange mechanisms will be susceptible to these attacks. If
you’re developing applications that rely on the long-term confidentiality of data passed over a TLS
connection, you should consider a plan to migrate to post-quantum cryptography before large-scale
quantum computers become available for use. AWS is working to prepare for this future, and we want
you to be well-prepared, too.

To protect data encrypted today against potential future attacks, AWS is participating with the
cryptographic community in the development of quantum-resistant or post-quantum algorithms. We've
implemented hybrid post-quantum key exchange cipher suites in AWS KMS endpoints. These hybrid
cipher suites, which combine classic and post-quantum elements, ensure that your TLS connection is at
least as strong as it would be with classic cipher suites.

These hybrid cipher suites are available for use on your production workloads in most AWS
Regions (p. 218). However, because the performance characteristics and bandwidth requirements of
hybrid cipher suites are different from those of classic key exchange mechanisms, we recommend that
you test them on your AWS KMS API calls (p. 221) under different conditions.

Feedback

As always, we welcome your feedback and participation in our open-source repositories. We’d especially
like to hear how your infrastructure interacts with this new variant of TLS traffic.

• To provide feedback on this topic, use the Feedback link in the lower right corner of this page. You can
also create an issue or a pull request in the aws-kms-developer-docs repository in GitHub.

• We're developing these hybrid cipher suites in open source in the s2n repository on GitHub. To provide
feedback on the usability of the cipher suites, or share novel test conditions or results, create an issue
in the s2n repository.

• We're writing code samples for using hybrid post-quantum TLS with AWS KMS in the aws-kms-pq-
tls-example GitHub repository. To ask questions or share ideas about configuring your HTTP client or
AWS KMS client to use the hybrid cipher suites, create an issue in the aws-kms-pq-tls-example
repository.

Supported AWS Regions

Post-quantum TLS for AWS KMS is available in all AWS Regions except for AWS GovCloud (US-East), AWS
GovCloud (US-West), China (Beijing), and China (Ningxia).

218

https://github.com/awsdocs/aws-kms-developer-guide/issues
https://github.com/awsdocs/aws-kms-developer-guide/
https://github.com/awslabs/s2n
https://github.com/awslabs/s2n/issues
https://github.com/aws-samples/aws-kms-pq-tls-example
https://github.com/aws-samples/aws-kms-pq-tls-example
https://github.com/aws-samples/aws-kms-pq-tls-example/issues

AWS Key Management Service Developer Guide
About Post-Quantum TLS

For a list of AWS KMS endpoints for each AWS Region, see AWS Key Management Service Endpoints and
Quotas in the Amazon Web Services General Reference. For information about FIPS endpoints, see AWS
Service Endpoints in the Amazon Web Services General Reference..

About Hybrid Post-Quantum Key Exchange in TLS
AWS KMS supports hybrid post-quantum key exchange cipher suites. You can use the AWS SDK for Java
2.x and AWS common runtime to configure an HTTP client to use these cipher suites. Then, whenever
you connect to a AWS KMS endpoint with your HTTP client, the hybrid cipher suites are used.

This HTTP client uses s2n, which is an open source implementation of the TLS protocol. s2n includes the
pq-crypto module, which includes implementations of hybrid post-quantum algorithms for encryption in
transit.

The hybrid cipher suites in s2n are implemented only for key exchange, not for direct data encryption.
During key exchange, the client and server calculate the key they will use to encrypt and decrypt the data
on the wire.

The algorithms that s2n uses are a hybrid that combines Elliptic Curve Diffie-Hellman (ECDH), a classic
key exchange algorithm used today in TLS, with Bit Flipping Key Encapsulation (BIKE), a proposed post-
quantum algorithm. This mechanism uses each of the algorithms independently to generate a key. Then
it combines the two keys cryptographically. With s2n, you can configure an HTTP client with a cipher
preference that places ECDH with BIKE first in the preference list. Classic key exchange algorithms are
included in the preference list to ensure compatibility, but they are lower in the preference order.

If ongoing research reveals that the BIKE algorithm lacks the anticipated post-quantum strength, the
hybrid key is still at least as strong as the single ECDH key currently in use. The National Institute for
Standards and Technology (NIST) has not yet standardized post-quantum algorithms. They are still in the
process of evaluating candidate approaches. Until that process is complete, we recommend using hybrid
algorithms, rather than using post-quantum algorithms alone.

Using Hybrid Post-Quantum TLS with AWS KMS
You can use hybrid post-quantum TLS for your calls to AWS KMS. When setting up your HTTP client test
environment, be aware of the following information:

Encryption in Transit

The hybrid cipher suites in s2n are used only for encryption in transit. They protect your data while it
is traveling from your client to the AWS KMS endpoint. AWS KMS does not use these cipher suites to
encrypt data under customer master keys (CMKs).

Instead, when AWS KMS encrypts your data under CMKs, it uses symmetric cryptography with 256-bit
keys and the Advanced Encryption Standard in Galois Counter Mode (AES-GCM) algorithm, which is
already quantum resistant. Theoretical future, large-scale quantum computing attacks on ciphertexts
created under 256-bit AES-GCM keys reduce the effective security of the key to 128 bits. This security
level is sufficient to make brute force attacks on AWS KMS ciphertexts infeasible.

Supported Systems

Use of the hybrid cipher suites in s2n is currently supported only on Linux systems. In addition, these
cipher suites are supported only in SDKs that support the AWS common runtime, such as the AWS SDK
for Java 2.x. For an example, see How to Configure Hybrid Post-Quantum TLS (p. 220).

219

https://docs.aws.amazon.com/general/latest/gr/kms.html
https://docs.aws.amazon.com/general/latest/gr/kms.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://github.com/awslabs/s2n
https://github.com/awslabs/s2n/tree/master/pq-crypto
https://en.wikipedia.org/wiki/Elliptic-curve_Diffie%E2%80%93Hellman
https://bikesuite.org/
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://www.etsi.org/images/files/ETSIWhitePapers/QuantumSafeWhitepaper.pdf

AWS Key Management Service Developer Guide
How to Configure It

AWS KMS Endpoints

When using the hybrid cipher suites, use the standard AWS KMS endpoint. The hybrid cipher suites in s2n
are not compatible with the FIPS 140-2 validated endpoints for AWS KMS. Post-quantum algorithms are
not allowed in a validated cryptographic module.

When you configure a HTTP client with the hybrid post-quantum cipher preference in s2n, the post-
quantum ciphers are first in the cipher preference list. However, the preference list includes the classic,
non-hybrid ciphers lower in the preference order for compatibility. If you were to use this cipher
preference with an AWS KMS FIPS 140-2 validated endpoint, s2n negotiates a classic, non-hybrid key
exchange cipher.

For a list of AWS KMS endpoints for each AWS Region, see AWS Key Management Service Endpoints and
Quotas in the Amazon Web Services General Reference. For information about FIPS endpoints, see AWS
Service Endpoints in the Amazon Web Services General Reference.

Expected Performance

Our early benchmark testing shows that the hybrid cipher suites in s2n are slower than classic TLS cipher
suites. The effect varies based on the network profile, CPU speed, the number of cores, and your call rate.
For performance test results, see Post-quantum TLS now supported in AWS KMS.

How to Configure Hybrid Post-Quantum TLS
In this procedure, you get the aws-crt-dev-preview (developer preview) branch of the AWS SDK for
Java 2.x from its GitHub repository. Next, you build an AWS common runtime client and add the AWS
common runtime to your dependencies. Then you can configure an HTTP client that uses the hybrid
post-quantum cipher preference and create an AWS KMS client that uses the HTTP client.

To see a complete working examples of configuring and using hybrid post-quantum TLS with AWS KMS,
see the aws-kms-pq-tls-example repository.

1. Clone the developer preview branch (aws-crt-dev-preview) of the AWS SDK for Java 2.x.

The AWS SDK for Java 2.x is being developed in the aws-sdk-java-v2 GitHub repository.

Note
The aws-crt-dev-preview branch is a beta release. Your use of this library is subject to
Section 1.10 ("Beta Service Participation") of the AWS Service Terms.

$ git clone git@github.com:aws/aws-sdk-java-v2.git --branch aws-crt-dev-preview

2. Install and build the AWS common runtime client (aws-crt-client) JAR.

$ cd aws-sdk-java-v2
$ mvn install -Pquick

3. Add the AWS common runtime client to your Maven dependencies. We recommend using the latest
available version.

For example, this statement adds version 2.10.7-SNAPSHOT of the AWS common runtime client to
your Maven dependencies.

<dependency>
 <groupId>software.amazon.awssdk</groupId>
 <artifactId>aws-crt-client</artifactId>

220

https://docs.aws.amazon.com/general/latest/gr/rande.html#kms_region
https://docs.aws.amazon.com/general/latest/gr/kms.html
https://docs.aws.amazon.com/general/latest/gr/kms.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
http://aws.amazon.com/blogs/security/post-quantum-tls-now-supported-in-aws-kms/
https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk
https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk
https://github.com/aws-samples/aws-kms-pq-tls-example
https://github.com/aws/aws-sdk-java-v2/tree/aws-crt-dev-preview
https://github.com/aws/aws-sdk-java-v2
https://aws.amazon.com/service-terms/

AWS Key Management Service Developer Guide
How to Test It

 <version>2.10.7-SNAPSHOT</version>
</dependency>

4. To enable the hybrid post-quantum cipher suites, add the AWS SDK for Java 2.x to your project and
initialize it. Then enable the hybrid cipher suites as shown in the following example.

This code ensures that you are working on a system that supports the hybrid cipher suite. The code
then creates an HTTP client with the TLS_CIPHER_KMS_PQ_TLSv1_0_2019_06 cipher preference
that prioritizes the ECDH with BIKE hybrid cipher suite. Finally, it creates an AWS KMS client that
uses the HTTP client for data transmission.

This code uses the AWS KMS asynchronous client, KmsAsyncClient, which calls AWS KMS
asynchronously. For information about this client, see the KmsAsyncClient Javadoc.

After this code completes, your AWS KMS API requests on the AWS KMS asynchronous client use the
hybrid cipher suite for TLS.

// Check platform support
if(!TLS_CIPHER_KMS_PQ_TLSv1_0_2019_06.isSupported()){
 throw new RuntimeException("Hybrid post-quantum cipher suites are not supported on
 this platform");
}

// Configure HTTP client
SdkAsyncHttpClient awsCrtHttpClient = AwsCrtAsyncHttpClient.builder()
 .tlsCipherPreference(TLS_CIPHER_KMS_PQ_TLSv1_0_2019_06)
 .build();

// Create the KMS async client
KmsAsyncClient kmsAsync = KmsAsyncClient.builder()
 .httpClient(awsCrtHttpClient)
 .build();

5. Test your KMS calls with post-quantum TLS.

When you call AWS KMS API operations on the configured AWS KMS client, your calls are
transmitted to the AWS KMS endpoint using hybrid post-quantum TLS. To test your configuration,
run a simple KMS API call, such as ListKeys.

ListKeysReponse keys = kmsAsync.listKeys().get();

Testing Hybrid Post-Quantum TLS with AWS KMS
Consider running the following tests with hybrid cipher suites on your applications that call AWS KMS.

• Run load tests and benchmarks. The hybrid cipher suites perform differently than traditional key
exchange algorithms. You might need to adjust your connection timeouts to allow for the longer
handshake times. If you’re running inside an AWS Lambda function, extend the execution timeout
setting.

• Try connecting from different locations. Depending on the network path your request takes, you
might discover that intermediate hosts, proxies, or firewalls with deep packet inspection (DPI) block
the request. This might result from using the new cipher suites in the ClientHello part of the TLS
handshake, or from the larger key exchange messages. If you have trouble resolving these issues, work
with your security team or IT administrators to update the relevant configuration and unblock the new
TLS cipher suites.

221

https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/kms/KmsAsyncClient.html
https://docs.aws.amazon.com/kms/latest/APIReference/
https://docs.aws.amazon.com/kms/latest/APIReference/API_ListKeys.html
https://tools.ietf.org/html/rfc5246#section-7.4.1.2

AWS Key Management Service Developer Guide
Learn More

Learn More About Post-Quantum TLS in AWS KMS
For more information about using hybrid post-quantum TLS in AWS KMS, see the following resources.

• For more information about using hybrid post-quantum TLS cipher suites with AWS KMS, including
performance data, see Post-quantum TLS now supported in AWS KMS.

• For information about the AWS SDK for Java 2.x, see the AWS SDK for Java 2.x Developer Guide and
the AWS SDK for Java 2.x released blog post.

• For information about s2n, see Introducing s2n, a New Open Source TLS Implementation and Using
s2n.

• For information about the post-quantum cryptography project at the National Institute for Standards
and Technology (NIST), see Post-Quantum Cryptography.

• For technical information about using hybrid post-quantum key exchange in TLS, see Hybrid Post-
Quantum Key Encapsulation Methods (PQ KEM) for Transport Layer Security 1.2 (TLS).

222

http://aws.amazon.com/blogs/security/post-quantum-tls-now-supported-in-aws-kms/
https://docs.aws.amazon.com/sdk-for-java/v2/developer-guide/
http://aws.amazon.com/blogs/developer/aws-sdk-for-java-2-x-released/
http://aws.amazon.com/blogs/security/introducing-s2n-a-new-open-source-tls-implementation/
https://github.com/awslabs/s2n/blob/master/docs/USAGE-GUIDE.md
https://github.com/awslabs/s2n/blob/master/docs/USAGE-GUIDE.md
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://tools.ietf.org/html/draft-campagna-tls-bike-sike-hybrid-01
https://tools.ietf.org/html/draft-campagna-tls-bike-sike-hybrid-01

AWS Key Management Service Developer Guide

How Key State Affects Use of a
Customer Master Key

Customer master keys (CMKs) are always in one of the following states: Enabled, Disabled,
PendingImport, PendingDeletion, or Unavailable.

The following table shows whether AWS KMS API operations that run on a CMK in each state can be
expected to succeed (✓), fail (X), or succeed only under certain conditions (?). The result often differs for
CMKs with imported key material.

Symmetric CMKs Enabled, Disabled, PendingImport, PendingDeletion, or Unavailable.
Asymmetric CMKs can be in the Enabled, Disabled, or PendingDeletion key state.

The Unavailable state applies only to a CMK in a custom key store (p. 172). A CMK in a custom key
store is Unavailable when the custom key store is intentionally disconnected from its AWS CloudHSM
cluster. You can view and manage unavailable CMKs, but you cannot use them in cryptographic
operations.

Note
Asymmetric CMKs and asymmetric data key pairs are supported by AWS KMS only in the
following AWS Regions: US East (N. Virginia), US West (Oregon), Asia Pacific (Sydney), Asia
Pacific (Tokyo), and Europe (Ireland).

The following API operations do not appear in the table because they do not use an existing CMK.

• ConnectCustomKeyStore
• CreateCustomKeyStore
• CreateKey
• DeleteCustomKeyStore
• DescribeCustomKeyStores
• DisconnectCustomKeyStore
• GenerateRandom
• UpdateCustomKeyStore

API Enabled Disabled Pending
Import

Pending
Deletion

Unavailable

CancelKeyDeletion

[4] [4] [4] [4], [13]

CreateAlias

[3]

CreateGrant

[1] [5] [2] or [3]

223

AWS Key Management Service Developer Guide

API Enabled Disabled Pending
Import

Pending
Deletion

Unavailable

Decrypt

[1] [5] [2] or [3] [11]

DeleteAlias

DeleteImportedKeyMaterial

[9] [9] (No effect) [9] [9]

DescribeKey

DisableKey

[5] [3] [12]

DisableKeyRotation

[7] [1] or [7] [6] [3] or [7] [7]

EnableKey

[5] [3] [12]

EnableKeyRotation

[7] [1] or [7] [6] [3] or [7] [7]

Encrypt

[1] [5] [2] or [3] [11]

GenerateDataKey

[1] [5] [2] or [3] [11]

GenerateDataKeyPair

[1] [5] [2] or [3] [11]

224

AWS Key Management Service Developer Guide

API Enabled Disabled Pending
Import

Pending
Deletion

Unavailable

GenerateDataKeyPairWithoutPlaintext

[1] [5] [2] or [3] [11]

GenerateDataKeyWithoutPlaintext

[1] [5] [2] or [3] [11]

GetKeyPolicy

GetKeyRotationStatus

[7] [7] [6] [7] [7]

GetParametersForImport

[9] [9] [8] or [9] [9]

GetPublicKey

[1]

N/A

[2] or [3]

N/A

ImportKeyMaterial

[9] [9] [8] or [9] [9]

ListAliases

ListGrants

ListKeyPolicies

ListKeys

ListResourceTags

ListRetirableGrants

PutKeyPolicy

225

AWS Key Management Service Developer Guide

API Enabled Disabled Pending
Import

Pending
Deletion

Unavailable

ReEncrypt

[1] [5] [2] or [3] [11]

RetireGrant

RevokeGrant

ScheduleKeyDeletion

[3]

Sign

[1]

N/A

[2] or [3]

N/A

TagResource

[3]

UnTagResource

[3]

UpdateAlias

[10]

UpdateKeyDescription

[3]

Verify

[1]

N/A

[2] or [3]

N/A

Table Details

• [1] DisabledException: <CMK ARN> is disabled.

• [2] DisabledException: <CMK ARN> is pending deletion.

• [3] KMSInvalidStateException: <CMK ARN> is pending deletion.

226

AWS Key Management Service Developer Guide

• [4] KMSInvalidStateException: <CMK ARN> is not pending deletion.
• [5] KMSInvalidStateException: <CMK ARN> is pending import.
• [6] UnsupportedOperationException: <CMK ARN> origin is EXTERNAL which is not
valid for this operation.

• [7] If the CMK has imported key material or is in a custom key store:
UnsupportedOperationException.

• [8] If the CMK has imported key material: KMSInvalidStateException
• [9] If the CMK cannot or does not have imported key material: UnsupportedOperationException.
• [10] If the source CMK is pending deletion, the command succeeds. If the destination CMK is pending

deletion, the command fails with error: KMSInvalidStateException : <CMK ARN> is pending
deletion.

• [11] KMSInvalidStateException: <CMK ARN> is unavailable. You cannot perform this
operation on an unavailable CMK.

• [12] The operation succeeds, but the key state of the CMK does not change until it becomes available.
• [13] While a CMK in a custom key store is pending deletion, its key state remains PendingDeletion

even if the CMK becomes unavailable. This allows you to cancel deletion of the CMK at any time during
the waiting period.

227

AWS Key Management Service Developer Guide
AWS CloudTrail

How AWS Services use AWS KMS

Many AWS services use AWS KMS to support encryption of your data. When an AWS service is integrated
with AWS KMS, you can use the customer master keys (CMKs) in your account to protect the data that
the service receives, stores, or manages for you. For the complete list of AWS services that are integrated
with AWS KMS, see AWS Service Integration.

The following topics discuss in detail how particular services use AWS KMS, including the CMKs they
support, how they manage data keys, the permissions they require, and how to track each service's use of
the CMKs in your account.

Important
AWS services that integrate with AWS KMS support only symmetric CMKs. They do not support
asymmetric CMKs. For details, see the encryption topic in the documentation for the service.

How AWS CloudTrail Uses AWS KMS
You can use AWS CloudTrail to record AWS API calls and other activity for your AWS account and to save
the recorded information to log files in an Amazon Simple Storage Service (Amazon S3) bucket that you
choose. By default, the log files delivered by CloudTrail to your S3 bucket are encrypted using server-
side encryption with Amazon S3–managed encryption keys (SSE-S3). But you can choose instead to use
server-side encryption with AWS KMS–managed keys (SSE-KMS). To learn how to encrypt your CloudTrail
log files with AWS KMS, see Encrypting CloudTrail Log Files with AWS KMS–Managed Keys (SSE-KMS) in
the AWS CloudTrail User Guide.

Important
AWS CloudTrail and Amazon S3 support only symmetric customer master keys (p. 130) (CMKs).
You cannot use an asymmetric CMK (p. 130) to encrypt your CloudTrail Logs. To determine
whether a CMK is symmetric or asymmetric, see Identifying Symmetric and Asymmetric
CMKs (p. 33).

Topics

• Understanding When Your CMK is Used (p. 228)

• Understanding How Often Your CMK is Used (p. 232)

Understanding When Your CMK is Used
Encrypting CloudTrail log files with AWS KMS builds on the Amazon S3 feature called server-side
encryption with AWS KMS–managed keys (SSE-KMS). To learn more about SSE-KMS, see How Amazon
Simple Storage Service (Amazon S3) Uses AWS KMS (p. 265) in this guide or Protecting Data Using
Server-Side Encryption with AWS KMS–Managed Keys (SSE-KMS) in the Amazon Simple Storage Service
Developer Guide.

When you configure AWS CloudTrail to use SSE-KMS to encrypt your log files, CloudTrail and Amazon
S3 use your KMS customer master key (CMK) when you perform certain actions with those services.
The following sections explain when and how those services can use your CMK, and provide additional
information that you can use to validate this explanation.

228

https://aws.amazon.com/kms/features/#AWS_Service_Integration
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/encrypting-cloudtrail-log-files-with-aws-kms.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html

AWS Key Management Service Developer Guide
Understanding When Your CMK is Used

Actions that cause CloudTrail and Amazon S3 to use your CMK

• You Configure CloudTrail to Encrypt Log Files with Your Customer Master Key (CMK) (p. 229)

• CloudTrail Puts a Log File into Your S3 Bucket (p. 230)

• You Get an Encrypted Log File from Your S3 Bucket (p. 231)

You Configure CloudTrail to Encrypt Log Files with Your
Customer Master Key (CMK)

When you update your CloudTrail configuration to use your CMK, CloudTrail sends a GenerateDataKey
request to AWS KMS to verify that the CMK exists and that CloudTrail has permission to use it for
encryption. CloudTrail does not use the resulting data key.

The GenerateDataKey request includes the following information for the encryption context (p. 12):

• The Amazon Resource Name (ARN) of the CloudTrail trail

• The ARN of the S3 bucket and path where the CloudTrail log files are delivered

The GenerateDataKey request results in an entry in your CloudTrail logs similar to the following

example. When you see a log entry like this one, you can determine that CloudTrail () called the AWS

KMS () GenerateDataKey operation () for a specific trail (). AWS KMS created the data key

under a specific CMK ().

Note
You might need to scroll to the right to see some of the callouts in the following example log
entry.

{
 "eventVersion": "1.02",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AIDACKCEVSQ6C2EXAMPLE",

 "arn": "arn:aws:iam::086441151436:user/AWSCloudTrail",
 "accountId": "086441151436",
 "accessKeyId": "AKIAI44QH8DHBEXAMPLE",
 "userName": "AWSCloudTrail",
 "sessionContext": {"attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2015-11-11T21:15:33Z"
 }},
 "invokedBy": "internal.amazonaws.com"
 },
 "eventTime": "2015-11-11T21:15:33Z",

 "eventSource": "kms.amazonaws.com",

 "eventName": "GenerateDataKey",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "internal.amazonaws.com",
 "userAgent": "internal.amazonaws.com",
 "requestParameters": {
 "keyId": "arn:aws:kms:us-west-2:111122223333:alias/ExampleAliasForCloudTrailCMK",
 "encryptionContext": {

 "aws:cloudtrail:arn": "arn:aws:cloudtrail:us-west-2:111122223333:trail/Default",
 "aws:s3:arn": "arn:aws:s3:::example-bucket-for-CT-logs/AWSLogs/111122223333/"
 },

229

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/create-kms-key-policy-for-cloudtrail-update-trail.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

AWS Key Management Service Developer Guide
Understanding When Your CMK is Used

 "keySpec": "AES_256"
 },
 "responseElements": null,
 "requestID": "581f1f11-88b9-11e5-9c9c-595a1fb59ac0",
 "eventID": "3cdb2457-c035-4890-93b6-181832b9e766",
 "readOnly": true,
 "resources": [{
 "ARN": "arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "accountId": "111122223333"
 }],
 "eventType": "AwsServiceEvent",
 "recipientAccountId": "111122223333"
}

CloudTrail Puts a Log File into Your S3 Bucket

Each time CloudTrail puts a log file into your S3 bucket, Amazon S3 sends a GenerateDataKey request
to AWS KMS on behalf of CloudTrail. In response to this request, AWS KMS generates a unique data
key and then sends Amazon S3 two copies of the data key, one in plaintext and one that is encrypted
with the specified CMK. Amazon S3 uses the plaintext data key to encrypt the CloudTrail log file and
then removes the plaintext data key from memory as soon as possible after use. Amazon S3 stores the
encrypted data key as metadata with the encrypted CloudTrail log file.

The GenerateDataKey request includes the following information for the encryption context (p. 12):

• The Amazon Resource Name (ARN) of the CloudTrail trail

• The ARN of the S3 object (the CloudTrail log file)

Each GenerateDataKey request results in an entry in your CloudTrail logs similar to the following

example. When you see a log entry like this one, you can determine that CloudTrail () called the

AWS KMS () GenerateDataKey operation () for a specific trail () to protect a specific log file

(). AWS KMS created the data key under the specified CMK (), shown twice in the same log entry.

Note
You might need to scroll to the right to see some of the callouts in the following example log
entry.

{
 "eventVersion": "1.02",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AROACKCEVSQ6C2EXAMPLE:i-34755b85",

 "arn": "arn:aws:sts::086441151436:assumed-role/AWSCloudTrail/i-34755b85",
 "accountId": "086441151436",
 "accessKeyId": "AKIAI44QH8DHBEXAMPLE",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2015-11-11T20:45:25Z"
 },
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AROACKCEVSQ6C2EXAMPLE",
 "arn": "arn:aws:iam::086441151436:role/AWSCloudTrail",
 "accountId": "086441151436",
 "userName": "AWSCloudTrail"

230

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

AWS Key Management Service Developer Guide
Understanding When Your CMK is Used

 }
 },
 "invokedBy": "internal.amazonaws.com"
 },
 "eventTime": "2015-11-11T21:15:58Z",

 "eventSource": "kms.amazonaws.com",

 "eventName": "GenerateDataKey",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "internal.amazonaws.com",
 "userAgent": "internal.amazonaws.com",
 "requestParameters": {
 "encryptionContext": {

 "aws:cloudtrail:arn": "arn:aws:cloudtrail:us-west-2:111122223333:trail/Default",
 "aws:s3:arn": "arn:aws:s3:::example-bucket-for-CT-logs/
AWSLogs/111122223333/CloudTrail/us-west-2/2015/11/11/111122223333_CloudTrail_us-

west-2_20151111T2115Z_7JREEBimdK8d2nC9.json.gz"
 },
 "keyId": "arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "keySpec": "AES_256"
 },
 "responseElements": null,
 "requestID": "66f3f74a-88b9-11e5-b7fb-63d925c72ffe",
 "eventID": "7738554f-92ab-4e27-83e3-03354b1aa898",
 "readOnly": true,
 "resources": [{
 "ARN": "arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "accountId": "111122223333"
 }],
 "eventType": "AwsServiceEvent",
 "recipientAccountId": "111122223333"
}

You Get an Encrypted Log File from Your S3 Bucket
Each time you get an encrypted CloudTrail log file from your S3 bucket, Amazon S3 sends a Decrypt
request to AWS KMS on your behalf to decrypt the log file's encrypted data key. In response to this
request, AWS KMS uses your CMK to decrypt the data key and then sends the plaintext data key to
Amazon S3. Amazon S3 uses the plaintext data key to decrypt the CloudTrail log file and then removes
the plaintext data key from memory as soon as possible after use.

The Decrypt request includes the following information for the encryption context (p. 12):

• The Amazon Resource Name (ARN) of the CloudTrail trail

• The ARN of the S3 object (the CloudTrail log file)

Each Decrypt request results in an entry in your CloudTrail logs similar to the following example. When

you see a log entry like this one, you can determine that an IAM user in your AWS account () called

the AWS KMS () Decrypt operation () for a specific trail () and a specific log file (). AWS

KMS decrypted the data key under a specific CMK ().

Note
You might need to scroll to the right to see some of the callouts in the following example log
entry.

231

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

AWS Key Management Service Developer Guide
Understanding How Often Your CMK is Used

{
 "eventVersion": "1.02",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AIDACKCEVSQ6C2EXAMPLE",

 "arn": "arn:aws:iam::111122223333:user/cloudtrail-admin",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "userName": "cloudtrail-admin",
 "sessionContext": {"attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2015-11-11T20:48:04Z"
 }},
 "invokedBy": "signin.amazonaws.com"
 },
 "eventTime": "2015-11-11T21:20:52Z",

 "eventSource": "kms.amazonaws.com",

 "eventName": "Decrypt",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "internal.amazonaws.com",
 "userAgent": "internal.amazonaws.com",
 "requestParameters": {
 "encryptionContext": {

 "aws:cloudtrail:arn": "arn:aws:cloudtrail:us-west-2:111122223333:trail/Default",
 "aws:s3:arn": "arn:aws:s3:::example-bucket-for-CT-logs/
AWSLogs/111122223333/CloudTrail/us-west-2/2015/11/11/111122223333_CloudTrail_us-

west-2_20151111T2115Z_7JREEBimdK8d2nC9.json.gz"
 }
 },
 "responseElements": null,
 "requestID": "16a0590a-88ba-11e5-b406-436f15c3ac01",
 "eventID": "9525bee7-5145-42b0-bed5-ab7196a16daa",
 "readOnly": true,
 "resources": [{
 "ARN": "arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "accountId": "111122223333"
 }],
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
}

Understanding How Often Your CMK is Used
To predict costs and better understand your AWS bill, you might want to know how often CloudTrail uses
your CMK. AWS KMS charges for all API requests to the service that exceed the free tier. For the exact
charges, see AWS Key Management Service Pricing.

When you encrypt CloudTrail log files with AWS KMS–Managed Keys (SSE-KMS), each time CloudTrail
puts a log file into your S3 bucket (p. 230) it results in an AWS KMS API request. Typically, CloudTrail
puts a log file into your S3 bucket once every five minutes, which results in approximately 288 AWS KMS
API requests per day, per region, and per AWS account. For example:

• If you enable this feature in two regions in a single AWS account, you can expect approximately 576
AWS KMS API requests per day (2 x 288).

• If you enable this feature in two regions in each of three AWS accounts, you can expect approximately
1,728 AWS KMS API requests per day (6 x 288).

232

https://aws.amazon.com/kms/pricing/

AWS Key Management Service Developer Guide
Amazon DynamoDB

These numbers represent only the AWS KMS calls that result from PUT requests. They do not count the
decrypt calls to AWS KMS that result from GET requests when you get an encrypted log file from your S3
bucket.

How Amazon DynamoDB Uses AWS KMS
Amazon DynamoDB is a fully managed, scalable NoSQL database service. DynamoDB integrates with
AWS Key Management Service (AWS KMS) to support the encryption at rest server-side encryption
feature.

With encryption at rest, DynamoDB transparently encrypts all customer data in a DynamoDB table,
including its primary key and local and global secondary indexes, whenever the table is persisted to disk.
(If your table has a sort key, some of the sort keys that mark range boundaries are stored in plaintext in
the table metadata.) When you access your table, DynamoDB decrypts the table data transparently. You
do not need to change your applications to use or manage encrypted tables.

Encryption at rest also protects DynamoDB streams, global tables, and backups whenever these objects
are saved to durable media. Statements about tables in this topic apply to these objects, too.

All DynamoDB tables are encrypted. There is no option to enable or disable encryption for new or
existing tables. By default, all tables are encrypted under an AWS owned customer master key (p. 4)
(CMK) in the DynamoDB service account. However, you can select an option to encrypt some or all of
your tables under a customer managed CMK (p. 3) or the AWS managed CMK (p. 4) for DynamoDB in
your account.

Note
Before November 2018, encryption at rest was an optional feature that supported only the
AWS managed CMK for DynamoDB. If you enabled encryption at rest on any of your DynamoDB
tables, they will continue to be encrypted under the AWS managed CMK unless you use the AWS
Management Console or UpdateTable operation to switch to a customer managed CMK or an
AWS owned CMK.

Client-Side Encryption for DynamoDB

In addition to encryption at rest, which is a server-side encryption feature, AWS provides the Amazon
DynamoDB Encryption Client. This client-side encryption library enables you to protect your table data
before submitting it to DynamoDB. With server-side encryption, your data is encrypted in transit over an
HTTPS connection, decrypted at the DynamoDB endpoint, and then re-encrypted before being stored
in DynamoDB. Client-side encryption provides end-to-end protection for your data from its source to
storage in DynamoDB.

You can use the DynamoDB Encryption Client along with encryption at rest. To help you decide if
this strategy is right your DynamoDB data, see Client-Side or Server-Side Encryption? in the Amazon
DynamoDB Encryption Client Developer Guide.

Topics
• Using CMKs and Data Keys (p. 233)
• Authorizing Use of Your CMK (p. 235)
• DynamoDB Encryption Context (p. 239)
• Monitoring DynamoDB Interaction with AWS KMS (p. 239)

Using CMKs and Data Keys
The DynamoDB encryption at rest feature uses an AWS KMS customer master key (CMK) and a hierarchy
of data keys to protect your table data. DynamoDB uses the same key hierarchy to protect DynamoDB
streams, global tables, and backups when they are written to durable media.

233

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/EncryptionAtRest.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html#HowItWorks.CoreComponents.SecondaryIndexes
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GlobalTables.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/BackupRestore.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateTable.html
https://docs.aws.amazon.com/dynamodb-encryption-client/latest/devguide/
https://docs.aws.amazon.com/dynamodb-encryption-client/latest/devguide/
https://docs.aws.amazon.com/dynamodb-encryption-client/latest/devguide/client-server-side.html

AWS Key Management Service Developer Guide
Using CMKs and Data Keys

Customer Master Key (CMK)

Encryption at rest protects your DynamoDB tables under an AWS KMS customer master key (CMK).
By default, it uses an AWS owned CMK (p. 4), a multi-tenant key that is created and managed in
a DynamoDB service account. But DynamoDB supports an option to encrypt some or all of your
tables under a customer managed CMKs (p. 3) or the AWS managed CMK (p. 4) for DynamoDB (aws/
dynamodb) in your AWS account. You can select the CMK for a table when you create or update the
table, and you can make a different choice for each table.

Important
DynamoDB supports only symmetric CMKs (p. 130). You cannot use an asymmetric
CMK (p. 130) to encrypt your DynamoDB tables. To determine whether a CMK is symmetric
or asymmetric, see Identifying Symmetric and Asymmetric CMKs (p. 33).

You can choose your CMK in the DynamoDB console or by using DynamoDB API. When you select a
CMK for a table, the local and global secondary indexes, streams, and backups are encrypted with
the same CMK. However, you cannot use a customer managed CMK to encrypt DynamoDB global
table replicas. To encrypt replicas, use an AWS owned CMK or an AWS managed CMK.

You can change the CMK for a table at any time, either in the DynamoDB console or by using the
UpdateTable operation. The process of switching keys is seamless and does not require downtime or
degrade service.

Use a customer managed CMK to get the following features:

• You create and manage the CMK, including setting the key policies (p. 50), IAM policies (p. 67) and
grants (p. 115) to control access to the CMK. You can enable and disable (p. 41) the CMK, enable
and disable automatic key rotation (p. 142), and delete the CMK (p. 160) when it is no longer in
use.

• You can use a customer managed CMK with imported key material (p. 147) or a customer
managed CMK in a custom key store (p. 172) that you own and manage.

• You can audit the encryption and decryption of your DynamoDB table by examining the
DynamoDB API calls to AWS KMS in AWS CloudTrail logs (p. 239).

Use the AWS managed CMK if you need any of the following features:

• You can view the CMK (p. 22) and view its key policy (p. 61). (You cannot change the key policy.)

• You can audit the encryption and decryption of your DynamoDB table by examining the
DynamoDB API calls to AWS KMS in AWS CloudTrail logs (p. 239).

However, the AWS owned CMK is free of charge and its use does not count against AWS KMS
limits (p. 353). Customer managed CMKs and AWS managed CMKsincur a charge for each API call
and AWS KMS limits apply to these CMKs.

Table Keys

DynamoDB uses the CMK for the table to generate and encrypt a unique data key (p. 4) for the table,
known as the table key. The table key persists for the lifetime of the encrypted table.

The table key is used as a key encryption key. DynamoDB uses this table key to protect data
encryption keys that are used to encrypt the table data. DynamoDB generates a unique data
encryption key for each underlying structure in a table, but multiple table items might be protected
by the same data encryption key.

234

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateTable.html
https://aws.amazon.com/kms/pricing/

AWS Key Management Service Developer Guide
Authorizing Use of Your CMK

When you first access an encrypted table, DynamoDB sends a request to AWS KMS to use the CMK to
decrypt the table key. Then, it uses the plaintext table key to decrypt the data encryption keys, and
uses the plaintext data encryption keys to decrypt table data.

DynamoDB generates, uses, and stores the table key and data encryption keys outside of AWS KMS.
It protects all keys with Advanced Encryption Standard (AES) encryption and 256-bit encryption
keys. Then, it stores the encrypted keys with the encrypted data so they are available to decrypt the
table data on demand.

If you change the CMK for your table, DynamoDB generates a new table key. Then, it uses the new
table key to re-encrypt the data encryption keys.

Table Key Caching

To avoid calling AWS KMS for every DynamoDB operation, DynamoDB caches the plaintext table
keys for each connection in memory. If DynamoDB gets a request for the cached table key after
five minutes of inactivity, it sends a new request to AWS KMS to decrypt the table key. This call will
capture any changes made to the access policies of the CMK in AWS KMS or AWS Identity and Access
Management (IAM) since the last request to decrypt the table key.

Authorizing Use of Your CMK
If you use a customer managed CMK (p. 3) or the AWS managed CMK (p. 4) in your account to protect
your DynamoDB table, the policies on that CMK must give DynamoDB permission to use it on your
behalf. The authorization context on the AWS managed CMK for DynamoDB includes its key policy and
grants that delegate the permissions to use it.

You have full control over the policies and grants on a customer managed CMK. Because the AWS
managed CMK is in your account, you can view its policies and grants. But, because it is managed by
AWS, you cannot change the policies.

DynamoDB does not need additional authorization to use the default AWS owned CMK (p. 2) to protect
the DynamoDB tables in your AWS account.

Topics

• AWS Managed CMK Key Policy (p. 236)

235

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

AWS Key Management Service Developer Guide
Authorizing Use of Your CMK

• Customer Managed CMK Key Policy (p. 237)
• Using Grants to Authorize DynamoDB (p. 238)

AWS Managed CMK Key Policy
When DynamoDB uses the AWS managed CMK (p. 4) for DynamoDB (aws/dynamodb) in cryptographic
operations, it does so on behalf of the user who is accessing the DynamoDB resource. The key policy
on the AWS managed CMK gives all users in the account permission to use the AWS managed CMK
for specified operations. But permission is granted only when DynamoDB makes the request on the
user's behalf. The ViaService condition (p. 111) in the key policy does not allow any user to use the AWS
managed CMK unless the request originates with the DynamoDB service.

This key policy, like the policies of all AWS managed keys, is established by AWS. You cannot change it,
but you can view it at any time. For details, see Viewing a Key Policy (p. 61).

The policy statements in the key policy have the following effect:

• Allow users in the account to use the AWS managed CMK for DynamoDB in cryptographic operations
when the request comes from DynamoDB on their behalf. The policy also allows users to create
grants (p. 238) for the CMK.

• Allows the AWS account root user to view the properties of the AWS managed CMK for DynamoDB
and to revoke the grant that allows DynamoDB to use the CMK. DynamoDB uses grants (p. 238) for
ongoing maintenance operations.

• Allows DynamoDB to perform read-only operations to find the AWS managed CMK for DynamoDB in
your account.

{
 "Version" : "2012-10-17",
 "Id" : "auto-dynamodb-1",
 "Statement" : [{
 "Sid" : "Allow access through Amazon DynamoDB for all principals in the account that
 are authorized to use Amazon DynamoDB",
 "Effect" : "Allow",
 "Principal" : {
 "AWS" : "*"
 },
 "Action" : ["kms:Encrypt", "kms:Decrypt", "kms:ReEncrypt*", "kms:GenerateDataKey*",
 "kms:CreateGrant", "kms:DescribeKey"],
 "Resource" : "*",
 "Condition" : {
 "StringEquals" : {
 "kms:CallerAccount" : "111122223333",
 "kms:ViaService" : "dynamodb.us-west-2.amazonaws.com"
 }
 }
 }, {
 "Sid" : "Allow direct access to key metadata to the account",
 "Effect" : "Allow",
 "Principal" : {
 "AWS" : "arn:aws:iam::111122223333:root"
 },
 "Action" : ["kms:Describe*", "kms:Get*", "kms:List*", "kms:RevokeGrant"],
 "Resource" : "*"
 }, {
 "Sid" : "Allow DynamoDB Service with service principal name dynamodb.amazonaws.com to
 describe the key directly",
 "Effect" : "Allow",
 "Principal" : {
 "Service" : "dynamodb.amazonaws.com"

236

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/access-control-overview.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_RevokeGrant.html

AWS Key Management Service Developer Guide
Authorizing Use of Your CMK

 },
 "Action" : ["kms:Describe*", "kms:Get*", "kms:List*"],
 "Resource" : "*"
 }]
}

Customer Managed CMK Key Policy
When you select a customer managed CMK (p. 3) to protect a DynamoDB table, DynamoDB gets
permission to use the CMK on behalf of the principal who makes the selection. That principal, a user or
role, must have the permissions on the CMK that DynamoDB requires. You can provide these permissions
in a key policy (p. 50), an IAM policy (p. 67), or a grant (p. 115).

At a minimum, DynamoDB requires the following permissions on a customer managed CMK:

• kms:Encrypt

• kms:Decrypt

• kms:ReEncrypt* (for kms:ReEncryptFrom and kms:ReEncryptTo)

• kms:GenerateDataKey* (for kms:GenerateDataKey and kms:GenerateDataKeyWithoutPlaintext)

• kms:DescribeKey

• kms:CreateGrant

For example, the following example key policy provides only the required permissions. The policy has the
following effects:

• Allows DynamoDB to use the CMK in cryptographic operations and create grants, but only when it is
acting on behalf of principals in the account who have permission to use DynamoDB. If the principals
specified in the policy statement don't have permission to use DynamoDB, the call fails, even when it
comes from the DynamoDB service.

• The kms:ViaService (p. 111) condition key allows the permissions only when the request comes from
DynamoDB on behalf of the principals listed in the policy statement. These principals can't call these
operations directly. Note that the kms:ViaService value, dynamodb.*.amazonaws.com, has
an asterisk (*) in the Region position. DynamoDB requires the permission to be independent of any
particular AWS Region so it can make cross-Region calls to support DynamoDB global tables.

• Gives the CMK administrators (users who can assume the db-team role) read-only access to the CMK
and permission to revoke grants, including the grants that DynamoDB requires (p. 238) to protect the
table.

• Gives DynamoDB read-only access to the CMK. In this case, DynamoDB can call these operations
directly. It does not have to act on behalf of an account principal.

Before using an example key policy, replace the example principals with actual principals from your AWS
account.

{
 "Id": "key-policy-dynamodb",
 "Version":"2012-10-17",
 "Statement": [
 {

237

https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateGrant.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GlobalTables.html

AWS Key Management Service Developer Guide
Authorizing Use of Your CMK

 "Sid" : "Allow access through Amazon DynamoDB for all principals in the account that
 are authorized to use Amazon DynamoDB"
 "Effect": "Allow",
 "Principal": {"AWS": "arn:aws:iam::111122223333:user/db-lead"},
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey*",
 "kms:DescribeKey",
 "kms:CreateGrant"
],
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "kms:ViaService" : "dynamodb.*.amazonaws.com"
 }
 }
 },
 {
 "Sid": "Allow administrators to view the CMK and revoke grants",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/db-team"
 },
 "Action": [
 "kms:Describe*",
 "kms:Get*",
 "kms:List*",
 "kms:RevokeGrant"
],
 "Resource": "*"
 },
 {
 "Sid": "Allow DynamoDB to get information about the CMK",
 "Effect": "Allow",
 "Principal": {
 "Service":["dynamodb.amazonaws.com"]
 },
 "Action": [
 "kms:Describe*",
 "kms:Get*",
 "kms:List*"
],
 "Resource": "*"
 }
]
}

Using Grants to Authorize DynamoDB
In addition to key policies, DynamoDB uses grants to set permissions on a customer managed CMK or
the AWS managed CMK for DynamoDB (aws/dynamodb). To view the grants on a CMK in your account,
use the ListGrants operation. DynamoDB does not need grants, or any additional permissions, to use the
AWS owned CMK (p. 4) to protect your table.

DynamoDB uses the grant permissions when it performs background system maintenance and
continuous data protection tasks. It also uses grants to generate table keys (p. 233).

Each grant is specific to a table. If the account includes multiple tables encrypted under the same CMK,
there is a grant of each type for each table. The grant is constrained by the DynamoDB encryption
context (p. 239), which includes the table name and the AWS account ID, and it includes permission to
the retire the grant if it is no longer needed.

238

https://docs.aws.amazon.com/kms/latest/APIReference/API_ListGrants.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_RetireGrant.html

AWS Key Management Service Developer Guide
DynamoDB Encryption Context

To create the grants, DynamoDB must have permission to call CreateGrant on behalf of the user who
created the encrypted table. For AWS managed CMKs, DynamoDB gets kms:CreateGrant permission
from the key policy (p. 236), which allows account users to call CreateGrant on the CMK only when
DynamoDB makes the request on an authorized user's behalf.

The key policy can also allow the account to revoke the grant on the CMK. However, if you revoke the
grant on an active encrypted table, DynamoDB will not be able to protect and maintain the table.

DynamoDB Encryption Context
An encryption context (p. 12) is a set of key–value pairs that contain arbitrary nonsecret data. When
you include an encryption context in a request to encrypt data, AWS KMS cryptographically binds the
encryption context to the encrypted data. To decrypt the data, you must pass in the same encryption
context.

DynamoDB uses the same encryption context in all AWS KMS cryptographic operations. If you use a
customer managed CMK (p. 3) or an AWS managed CMK (p. 4) to protect your DynamoDB table, you
can use the encryption context to identify use of the CMK in audit records and logs. It also appears in
plaintext in logs, such as AWS CloudTrail and Amazon CloudWatch Logs.

The encryption context can also be used as a condition for authorization in policies and grants.
DynamoDB uses the encryption context to constrain the grants (p. 238) that allow access to the
customer managed CMK or AWS managed CMK in your account and region.

In its requests to AWS KMS, DynamoDB uses an encryption context with two key–value pairs.

"encryptionContextSubset": {
 "aws:dynamodb:tableName": "Books"
 "aws:dynamodb:subscriberId": "111122223333"
}

• Table – The first key–value pair identifies the table that DynamoDB is encrypting. The key is
aws:dynamodb:tableName. The value is the name of the table.

"aws:dynamodb:tableName": "<table-name>"

For example:

"aws:dynamodb:tableName": "Books"

• Account – The second key–value pair identifies the AWS account. The key is
aws:dynamodb:subscriberId. The value is the account ID.

"aws:dynamodb:subscriberId": "<account-id>"

For example:

"aws:dynamodb:subscriberId": "111122223333"

Monitoring DynamoDB Interaction with AWS KMS
If you use a customer managed CMK (p. 3) or an AWS managed CMK (p. 4) to protect your DynamoDB
tables, you can use AWS CloudTrail logs to track the requests that DynamoDB sends to AWS KMS on your
behalf.

239

https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateGrant.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_RevokeGrant.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html

AWS Key Management Service Developer Guide
Monitoring DynamoDB Interaction with AWS KMS

The GenerateDataKey, Decrypt, and CreateGrant requests are discussed in this section. In addition,
DynamoDB uses a DescribeKey operation to determine whether the CMK you selected exists in the
account and region. It also uses a RetireGrant operation to remove a grant when you delete a table.

GenerateDataKey

When you enable encryption at rest on a table, DynamoDB creates a unique table key. It sends a
GenerateDataKey request to AWS KMS that specifies the CMK for the table.

The event that records the GenerateDataKey operation is similar to the following example event.
The user is the DynamoDB service account. The parameters include the Amazon Resource Name
(ARN) of the CMK, a key specifier that requires a 256-bit key, and the encryption context (p. 239)
that identifies the table and the AWS account.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "AWSService",
 "invokedBy": "dynamodb.amazonaws.com"
 },
 "eventTime": "2018-02-14T00:15:17Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "GenerateDataKey",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "dynamodb.amazonaws.com",
 "userAgent": "dynamodb.amazonaws.com",
 "requestParameters": {
 "encryptionContext": {
 "aws:dynamodb:tableName": "Services",
 "aws:dynamodb:subscriberId": "111122223333"
 },
 "keySpec": "AES_256",
 "keyId": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 },
 "responseElements": null,
 "requestID": "229386c1-111c-11e8-9e21-c11ed5a52190",
 "eventID": "e3c436e9-ebca-494e-9457-8123a1f5e979",
 "readOnly": true,
 "resources": [
 {
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "accountId": "111122223333",
 "type": "AWS::KMS::Key"
 }
],
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333",
 "sharedEventID": "bf915fa6-6ceb-4659-8912-e36b69846aad"
}

Decrypt

When you access an encrypted DynamoDB table, DynamoDB needs to decrypt the table key so that
it can decrypt the keys below it in the hierarchy. It then decrypts the data in the table. To decrypt
the table key. DynamoDB sends a Decrypt request to AWS KMS that specifies the CMK for the table.

The event that records the Decrypt operation is similar to the following example event. The user is
the principal in your AWS account who is accessing the table. The parameters include the encrypted
table key (as a ciphertext blob) and the encryption context (p. 239) that identifies the table and the
AWS account. AWS KMS derives the ID of the CMK from the ciphertext.

240

https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_RetireGrant.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html

AWS Key Management Service Developer Guide
Monitoring DynamoDB Interaction with AWS KMS

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AROAIGDTESTANDEXAMPLE:user01",
 "arn": "arn:aws:sts::111122223333:assumed-role/Admin/user01",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2018-02-14T16:42:15Z"
 },
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AROAIGDT3HGFQZX4RY6RU",
 "arn": "arn:aws:iam::111122223333:role/Admin",
 "accountId": "111122223333",
 "userName": "Admin"
 }
 },
 "invokedBy": "dynamodb.amazonaws.com"
 },
 "eventTime": "2018-02-14T16:42:39Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "Decrypt",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "dynamodb.amazonaws.com",
 "userAgent": "dynamodb.amazonaws.com",
 "requestParameters":
 {
 "encryptionContext":
 {
 "aws:dynamodb:tableName": "Books",
 "aws:dynamodb:subscriberId": "111122223333"
 }
 },
 "responseElements": null,
 "requestID": "11cab293-11a6-11e8-8386-13160d3e5db5",
 "eventID": "b7d16574-e887-4b5b-a064-bf92f8ec9ad3",
 "readOnly": true,
 "resources": [
 {
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "accountId": "111122223333",
 "type": "AWS::KMS::Key"
 }
],
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
}

CreateGrant

When you use a customer managed CMK (p. 3) or an AWS managed CMK (p. 4) to protect your
DynamoDB table, DynamoDB uses grants (p. 238) to allow the service to perform continuous data
protection and maintenance and durability tasks. These grants are not required on AWS owned
CMKs (p. 4).

The grants that DynamoDB creates are specific to a table. The principal in the CreateGrant request is
the user who created the table.

241

https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateGrant.html

AWS Key Management Service Developer Guide
Monitoring DynamoDB Interaction with AWS KMS

The event that records the CreateGrant operation is similar to the following example event.
The parameters include the Amazon Resource Name (ARN) of the CMK for the table, the grantee
principal and retiring principal (the DynamoDB service), and the operations that the grant covers.
It also includes a constraint that requires all encryption operation use the specified encryption
context (p. 239).

{
 "eventVersion": "1.05",
 "userIdentity":
 {
 "type": "AssumedRole",
 "principalId": "AROAIGDTESTANDEXAMPLE:user01",
 "arn": "arn:aws:sts::111122223333:assumed-role/Admin/user01",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2018-02-14T00:12:02Z"
 },
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AROAIGDTESTANDEXAMPLE",
 "arn": "arn:aws:iam::111122223333:role/Admin",
 "accountId": "111122223333",
 "userName": "Admin"
 }
 },
 "invokedBy": "dynamodb.amazonaws.com"
 },
 "eventTime": "2018-02-14T00:15:15Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "CreateGrant",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "dynamodb.amazonaws.com",
 "userAgent": "dynamodb.amazonaws.com",
 "requestParameters": {
 "keyId": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "retiringPrincipal": "dynamodb.us-west-2.amazonaws.com",
 "constraints": {
 "encryptionContextSubset": {
 "aws:dynamodb:tableName": "Books",
 "aws:dynamodb:subscriberId": "111122223333"
 }
 },
 "granteePrincipal": "dynamodb.us-west-2.amazonaws.com",
 "operations": [
 "DescribeKey",
 "GenerateDataKey",
 "Decrypt",
 "Encrypt",
 "ReEncryptFrom",
 "ReEncryptTo",
 "RetireGrant"
]
 },
 "responseElements": {
 "grantId": "5c5cd4a3d68e65e77795f5ccc2516dff057308172b0cd107c85b5215c6e48bde"
 },
 "requestID": "2192b82a-111c-11e8-a528-f398979205d8",
 "eventID": "a03d65c3-9fee-4111-9816-8bf96b73df01",
 "readOnly": false,
 "resources": [

242

AWS Key Management Service Developer Guide
Amazon Elastic Block Store (Amazon EBS)

 {
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "accountId": "111122223333",
 "type": "AWS::KMS::Key"
 }
],
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
}

How Amazon Elastic Block Store (Amazon EBS)
Uses AWS KMS

This topic discusses in detail how Amazon Elastic Block Store (Amazon EBS) uses AWS KMS to encrypt
volumes and snapshots. For basic instructions about encrypting Amazon EBS volumes, see Amazon EBS
Encryption.

Topics

• Amazon EBS Encryption (p. 243)

• Using CMKs and Data Keys (p. 243)

• Amazon EBS Encryption Context (p. 244)

• Detecting Amazon EBS Failures (p. 244)

• Using AWS CloudFormation to Create Encrypted Amazon EBS Volumes (p. 245)

Amazon EBS Encryption
When you attach an encrypted Amazon EBS volume to a supported Amazon Elastic Compute Cloud
(Amazon EC2) instance type, data stored at rest on the volume, disk I/O, and snapshots created from the
volume are all encrypted. The encryption occurs on the servers that host Amazon EC2 instances.

This feature is supported on all Amazon EBS volume types. You access encrypted volumes the same way
you access other volumes; encryption and decryption are handled transparently and they require no
additional action from you, your EC2 instance, or your application. Snapshots of encrypted volumes are
automatically encrypted, and volumes that are created from encrypted snapshots are also automatically
encrypted.

The encryption status of an EBS volume is determined when you create the volume. You cannot change
the encryption status of an existing volume. However, you can migrate data between encrypted and
unencrypted volumes and apply a new encryption status while copying a snapshot.

Using CMKs and Data Keys
When you create an encrypted Amazon EBS volume, you specify an AWS KMS customer master key
(CMK). By default, Amazon EBS uses the AWS managed CMK (p. 4) for Amazon EBS in your account.
However, you can specify a customer managed CMK (p. 3).

Important
Amazon EBS supports only symmetric CMKs (p. 130). You cannot use an asymmetric
CMK (p. 130) to encrypt an Amazon EBS volume. To determine whether a CMK is symmetric or
asymmetric, see Identifying Symmetric and Asymmetric CMKs (p. 33).

243

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AmazonEBS.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html#EBSEncryption_supported_instances
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html#EBSEncryption_supported_instances
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html#EBSEncryption_considerations
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-creating-volume.html

AWS Key Management Service Developer Guide
Amazon EBS Encryption Context

Amazon EBS uses the CMK that you specify to generate a unique data key for each volume. It stores an
encrypted copy of the data key with the volume. Then, when you attach the volume to an Amazon EC2
instance, Amazon EBS uses the data key to encrypt all disk I/O to the volume.

The following explains how Amazon EBS uses your CMK:

1. When you create an encrypted EBS volume, Amazon EBS sends a GenerateDataKeyWithoutPlaintext
request to AWS KMS, specifying the CMK that you chose for EBS volume encryption.

2. AWS KMS generates a new data key, encrypts it under the specified CMK, and then sends the
encrypted data key to Amazon EBS to store with the volume metadata.

3. When you attach the encrypted volume to an EC2 instance, Amazon EC2 sends the encrypted data key
to AWS KMS with a Decrypt request.

4. AWS KMS decrypts the encrypted data key and then sends the decrypted (plaintext) data key to
Amazon EC2.

5. Amazon EC2 uses the plaintext data key in hypervisor memory to encrypt disk I/O to the EBS volume.
The plaintext data key persists in memory as long as the EBS volume is attached to the EC2 instance.

Amazon EBS Encryption Context
In its GenerateDataKeyWithoutPlaintext and Decrypt requests to AWS KMS, Amazon EBS uses an
encryption context with a name-value pair that identifies the volume or snapshot in the request. The
name in the encryption context does not vary.

An encryption context (p. 12) is a set of key–value pairs that contain arbitrary nonsecret data. When
you include an encryption context in a request to encrypt data, AWS KMS cryptographically binds the
encryption context to the encrypted data. To decrypt the data, you must pass in the same encryption
context.

For all volumes and for encrypted snapshots created with the Amazon EBS CreateSnapshot operation,
Amazon EBS uses the volume ID as encryption context value. In the requestParameters field of a
CloudTrail log entry, the encryption context looks similar to the following:

"encryptionContext": {
 "aws:ebs:id": "vol-0cfb133e847d28be9"
}

For encrypted snapshots created with the Amazon EC2 CopySnapshot operation, Amazon EBS uses the
snapshot ID as encryption context value. In the requestParameters field of a CloudTrail log entry, the
encryption context looks similar to the following:

"encryptionContext": {
 "aws:ebs:id": "snap-069a655b568de654f"
}

Detecting Amazon EBS Failures
To create an encrypted EBS volume or attach the volume to an EC2 instance, Amazon EBS and the
Amazon EC2 infrastructure must be able to use the CMK that you specified for EBS volume encryption.
When the CMK is not usable—for example, when its key state (p. 223) is not Enabled —the volume
creation or volume attachment fails.

In this case, Amazon EBS sends an event to Amazon CloudWatch Events to notify you about the failure.
With CloudWatch Events, you can establish rules that trigger automatic actions in response to these

244

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_CreateSnapshot.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_CopySnapshot.html

AWS Key Management Service Developer Guide
Using AWS CloudFormation to Create

Encrypted Amazon EBS Volumes

events. For more information, see Amazon CloudWatch Events for Amazon EBS in the Amazon EC2 User
Guide for Linux Instances, especially the following sections:

• Invalid Encryption Key on Volume Attach or Reattach
• Invalid Encryption Key on Create Volume

To fix these failures, ensure that the CMK that you specified for EBS volume encryption is enabled. To
do this, first view the CMK (p. 22) to determine its current key state (the Status column in the AWS
Management Console). Then, see the information at one of the following links:

• If the CMK's key state is disabled, enable it (p. 41).
• If the CMK's key state is pending import, import key material (p. 148).
• If the CMK's key state is pending deletion, cancel key deletion (p. 162).

Using AWS CloudFormation to Create Encrypted
Amazon EBS Volumes
You can use AWS CloudFormation to create encrypted Amazon EBS volumes. For more information, see
AWS::EC2::Volume in the AWS CloudFormation User Guide.

How Amazon Elastic Transcoder Uses AWS KMS
You can use Amazon Elastic Transcoder to convert media files stored in an Amazon S3 bucket into
formats required by consumer playback devices. Both input and output files can be encrypted and
decrypted. The following sections discuss how AWS KMS is used for both processes.

Topics
• Encrypting the input file (p. 245)
• Decrypting the input file (p. 246)
• Encrypting the output file (p. 247)
• HLS Content Protection (p. 248)
• Elastic Transcoder Encryption Context (p. 248)

Encrypting the input file
Before you can use Elastic Transcoder, you must create an Amazon S3 bucket and upload your media file
into it. You can encrypt the file before uploading by using AES client-side encryption or after uploading
by using Amazon S3 server-side encryption.

If you choose client-side encryption using AES, you are responsible for encrypting the file before
uploading it to Amazon S3, and you must provide Elastic Transcoder access to the encryption key. You
do this by using a symmetric (p. 130) AWS KMS customer master key (p. 2) (CMK) to protect the AES
encryption key you used to encrypt the media file.

If you choose server-side encryption, you are allowing Amazon S3 to perform all encryption and
decryption of files on your behalf. You can configure Amazon S3 to use one of three different master
keys to protect the unique data key used to encrypt your file:

• The Amazon S3 master key, a key that is owned and managed by AWS

245

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-cloud-watch-events.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-cloud-watch-events.html#attach-fail-key
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-cloud-watch-events.html#create-fail-key
https://aws.amazon.com/cloudformation/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-ec2-ebs-volume.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/CreatingaBucket.html

AWS Key Management Service Developer Guide
Decrypting the input file

• The AWS managed CMK (p. 4) for Amazon S3, a master key that is owned by your account, but
managed by AWS

• Any symmetric (p. 130) customer managed CMK (p. 3) that you create by using AWS KMS

Important
For both client-side and server-side encryption, Elastic Transcoder supports only symmetric
CMKs (p. 130). You cannot use an asymmetric CMK (p. 130) to encrypt your Elastic Transcoder
files. To determine whether a CMK is symmetric or asymmetric, see Identifying Symmetric and
Asymmetric CMKs (p. 33).

You can request encryption and the master key you want by using the Amazon S3 console or the
appropriate Amazon S3 APIs. For more information about how Amazon S3 performs encryption, see
Protecting Data Using Encryption in the Amazon Simple Storage Service Developer Guide.

When you protect your input file by using the AWS managed CMK for Amazon S3 in your account or a
customer managed CMK, Amazon S3 and AWS KMS interact in the following manner:

1. Amazon S3 requests a plaintext data key and a copy of the data key encrypted under the specified
CMK.

2. AWS KMS creates a data key, encrypts it with the specified CMK, and then sends both the plaintext
data key and the encrypted data key to Amazon S3.

3. Amazon S3 uses the plaintext data key to encrypt the media file and then stores the file in the
specified Amazon S3 bucket.

4. Amazon S3 stores the encrypted data key alongside of the encrypted media file.

Decrypting the input file
If you choose Amazon S3 server-side encryption to encrypt the input file, Elastic Transcoder does not
decrypt the file. Instead, Elastic Transcoder relies on Amazon S3 to perform decryption depending on the
settings you specify when you create a job and a pipeline.

The following combination of settings are available.

Encryption mode AWS KMS key Meaning

S3 Default Amazon S3 creates and manages
the keys used to encrypt and
decrypt the media file. The
process is opaque to the user.

S3-AWS-KMS Default Amazon S3 uses a data key
encrypted by the default AWS
managed CMK for Amazon S3
in your account to encrypt the
media file.

S3-AWS-KMS Custom (with ARN) Amazon S3 uses a data key
encrypted by the specified
customer managed CMK to
encrypt the media file.

When S3-AWS-KMS is specified, Amazon S3 and AWS KMS work together in the following manner to
perform the decryption.

246

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingEncryption.html
https://docs.aws.amazon.com/elastictranscoder/latest/developerguide/job-settings.html

AWS Key Management Service Developer Guide
Encrypting the output file

1. Amazon S3 sends the encrypted data key to AWS KMS.
2. AWS KMS decrypts the data key by using the appropriate CMK, and then sends the plaintext data key

back to Amazon S3.
3. Amazon S3 uses the plaintext data key to decrypt the ciphertext.

If you choose client-side encryption using an AES key, Elastic Transcoder retrieves the encrypted file from
the Amazon S3 bucket and decrypts it. Elastic Transcoder uses the CMK you specified when you created
the pipeline to decrypt the AES key and then uses the AES key to decrypt the media file.

Encrypting the output file
Elastic Transcoder encrypts the output file depending on how you specify the encryption settings when
you create a job and a pipeline. The following options are available.

Encryption mode AWS KMS key Meaning

S3 Default Amazon S3 creates and manages
the keys used to encrypt the
output file.

S3-AWS-KMS Default Amazon S3 uses a data key
created by AWS KMS and
encrypted by the AWS managed
CMK for Amazon S3 in your
account.

S3-AWS-KMS Custom (with ARN) Amazon S3 uses a data key
encrypted by using the customer
managed CMK specified by the
ARN to encrypt the media file.

AES- Default Elastic Transcoder uses the AWS
managed CMK for Amazon S3
in your account to decrypt the
specified AES key you provide
and uses that key to encrypt the
output file.

AES- Custom (with ARN) Elastic Transcoder uses the
customer managed CMK
specified by the ARN to decrypt
the specified AES key you
provide and uses that key to
encrypt the output file.

When you specify that the AWS managed CMK for Amazon S3 in your account or a customer managed
CMK is used to encrypt the output file, Amazon S3 and AWS KMS interact in the following manner:

1. Amazon S3 requests a plaintext data key and a copy of the data key encrypted under the specified
CMK.

2. AWS KMS creates a data key, encrypts it under the CMK, and sends both the plaintext data key and the
encrypted data key to Amazon S3.

3. Amazon S3 encrypts the media using the data key and stores it in the specified Amazon S3 bucket.
4. Amazon S3 stores the encrypted data key alongside the encrypted media file.

247

AWS Key Management Service Developer Guide
HLS Content Protection

When you specify that your provided AES key be used to encrypt the output file, the AES key must be
encrypted using a CMK in AWS KMS. Elastic Transcoder, AWS KMS, and you interact in the following
manner:

1. You encrypt your AES key by calling the Encrypt operation in the AWS KMS API. AWS KMS encrypts
the key by using the specified CMK. You specify which CMK to use when you are creating the pipeline.

2. You specify the file containing the encrypted AES key when you create the Elastic Transcoder job.
3. Elastic Transcoder decrypts the key by calling the Decrypt operation in the AWS KMS API, passing the

encrypted key as ciphertext.
4. Elastic Transcoder uses the decrypted AES key to encrypt the output media file and then deletes the

decrypted AES key from memory. Only the encrypted copy you originally defined in the job is saved to
disk.

5. You can download the encrypted output file and decrypt it locally by using the original AES key that
you defined.

Important
AWS never stores your private encryption keys. Therefore, it is important that you manage your
keys safely and securely. If you lose them, you won't be able to decrypt your data.

HLS Content Protection
HTTP Live Streaming (HLS) is an adaptive streaming protocol. Elastic Transcoder supports HLS by
breaking your input file into smaller individual files called media segments. A set of corresponding
individual media segments contain the same material encoded at different bit rates, thereby enabling
the player to select the stream that best fits the available bandwidth. Elastic Transcoder also creates
playlists that contain metadata for the various segments that are available to be streamed.

When you enable HLS content protection, each media segment is encrypted using a 128-bit AES
encryption key. When the content is viewed, during the playback process, the player downloads the key
and decrypts the media segments.

Two types of keys are used: an AWS KMS CMK and a data key. You must create a CMK to use to encrypt
and decrypt the data key. Elastic Transcoder uses the data key to encrypt and decrypt media segments.
The data key must be AES-128. All variations and segments of the same content are encrypted using the
same data key. You can provide a data key or have Elastic Transcoder create it for you.

The CMK can be used to encrypt the data key at the following points:

• If you provide your own data key, you must encrypt it before passing it to Elastic Transcoder.
• If you request that Elastic Transcoder generate the data key, then Elastic Transcoder encrypts the data

key for you.

The CMK can be used to decrypt the data key at the following points:

• Elastic Transcoder decrypts your provided data key when it needs to use the data key to encrypt the
output file or decrypt the input file.

• You decrypt a data key generated by Elastic Transcoder and use it to decrypt output files.

For more information, see HLS Content Protection in the Amazon Elastic Transcoder Developer Guide.

Elastic Transcoder Encryption Context
An encryption context (p. 12) is a set of key–value pairs that contain arbitrary nonsecret data. When
you include an encryption context in a request to encrypt data, AWS KMS cryptographically binds the

248

https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/elastictranscoder/latest/developerguide/content-protection.html

AWS Key Management Service Developer Guide
Amazon EMR

encryption context to the encrypted data. To decrypt the data, you must pass in the same encryption
context.

Elastic Transcoder uses the same encryption context in all AWS KMS API requests to generate data keys,
encrypt, and decrypt.

"service" : "elastictranscoder.amazonaws.com"

The encryption context is written to CloudTrail logs to help you understand how a given AWS KMS CMK
was used. In the requestParameters field of a CloudTrail log file, the encryption context looks similar
to the following:

"encryptionContext": {
 "service" : "elastictranscoder.amazonaws.com"
}

For more information about how to configure Elastic Transcoder jobs to use one of the supported
encryption options, see Data Encryption Options in the Amazon Elastic Transcoder Developer Guide.

How Amazon EMR Uses AWS KMS
When you use an Amazon EMR cluster, you can configure the cluster to encrypt data at rest before saving
it to a persistent storage location. You can encrypt data at rest on the EMR File System (EMRFS), on the
storage volumes of cluster nodes, or both. To encrypt data at rest, you can use a customer master key
(CMK) in AWS KMS. The following topics explain how an Amazon EMR cluster uses a CMK to encrypt data
at rest.

Important
Amazon EMR supports only symmetric CMKs (p. 130). You cannot use an asymmetric
CMK (p. 130) to encrypt data at rest in an Amazon EMR cluster. To determine whether a CMK is
symmetric or asymmetric, see Identifying Symmetric and Asymmetric CMKs (p. 33).

Amazon EMR clusters also encrypt data in transit, which means the cluster encrypts data before sending
it through the network. You cannot use a CMK to encrypt data in transit. For more information, see In-
Transit Data Encryption in the Amazon EMR Management Guide.

For more information about all the encryption options available in Amazon EMR, see Encryption Options
in the Amazon EMR Management Guide.

Topics
• Encrypting Data on the EMR File System (EMRFS) (p. 249)
• Encrypting Data on the Storage Volumes of Cluster Nodes (p. 251)
• Encryption Context (p. 252)

Encrypting Data on the EMR File System (EMRFS)
Amazon EMR clusters use two distributed files systems:

• The Hadoop Distributed File System (HDFS). HDFS encryption does not use a CMK in AWS KMS.

• The EMR File System (EMRFS). EMRFS is an implementation of HDFS that allows Amazon EMR clusters

to store data in Amazon Simple Storage Service (Amazon S3). EMRFS supports four encryption

249

https://docs.aws.amazon.com/elastictranscoder/latest/developerguide/encryption.html
https://aws.amazon.com/emr/
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-data-encryption-options.html#emr-encryption-intransit
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-data-encryption-options.html#emr-encryption-intransit
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-data-encryption-options.html

AWS Key Management Service Developer Guide
Encrypting Data on the EMR File System (EMRFS)

options, two of which use a CMK in AWS KMS. For more information about all four of the EMRFS
encryption options, see Encryption Options in the Amazon EMR Management Guide.

The two EMRFS encryption options that use a CMK use the following encryption features offered by
Amazon S3:

• Server-Side Encryption with AWS KMS-Managed Keys (SSE-KMS). With SSE-KMS, the Amazon EMR
cluster sends data to Amazon S3, and then Amazon S3 uses a CMK to encrypt the data before saving
it to an S3 bucket. For more information about how this works, see Process for Encrypting Data on
EMRFS with SSE-KMS (p. 250).

• Client-Side Encryption with AWS KMS-Managed Keys (CSE-KMS). With CSE-KMS, the Amazon EMR

cluster uses a CMK to encrypt data before sending it to Amazon S3 for storage. For more information
about how this works, see Process for Encrypting Data on EMRFS with CSE-KMS (p. 251).

When you configure an Amazon EMR cluster to encrypt data on EMRFS with SSE-KMS or CSE-KMS, you
choose the CMK in AWS KMS that you want Amazon S3 or the Amazon EMR cluster to use. With SSE-
KMS, you can choose the AWS managed CMK for Amazon S3 with the alias aws/s3, or a symmetric
customer managed CMK that you create. With CSE-KMS, you must choose a symmetric customer
managed CMK that you create. When you choose a customer managed CMK, you must ensure that
your Amazon EMR cluster has permission to use the CMK. For more information, see Using AWS KMS
Customer Master Keys (CMKs) for Encryption in the Amazon EMR Management Guide.

For both SSE-KMS and CSE-KMS, the CMK you choose is the master key in an envelope encryption (p. 11)
workflow. The data is encrypted with a unique data encryption key (or data key), and this data key is
encrypted under the CMK in AWS KMS. The encrypted data and an encrypted copy of its data key are
stored together as a single encrypted object in an S3 bucket. For more information about how this
works, see the following topics.

Topics
• Process for Encrypting Data on EMRFS with SSE-KMS (p. 250)
• Process for Encrypting Data on EMRFS with CSE-KMS (p. 251)

Process for Encrypting Data on EMRFS with SSE-KMS
When you configure an Amazon EMR cluster to use SSE-KMS, the encryption process works like this:

1. The cluster sends data to Amazon S3 for storage in an S3 bucket.
2. Amazon S3 sends a GenerateDataKey request to AWS KMS, specifying the key ID of the CMK that you

chose when you configured the cluster to use SSE-KMS. The request includes encryption context; for
more information, see Encryption Context (p. 252).

3. AWS KMS generates a unique data encryption key (data key) and then sends two copies of this data
key to Amazon S3. One copy is unencrypted (plaintext), and the other copy is encrypted under the
CMK.

4. Amazon S3 uses the plaintext data key to encrypt the data that it received in step 1, and then removes
the plaintext data key from memory as soon as possible after use.

5. Amazon S3 stores the encrypted data and the encrypted copy of the data key together as a single
encrypted object in an S3 bucket.

The decryption process works like this:

1. The cluster requests an encrypted data object from an S3 bucket.

250

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-data-encryption-options.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingClientSideEncryption.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-encryption-enable.html#emr-awskms-keys
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-encryption-enable.html#emr-awskms-keys
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html

AWS Key Management Service Developer Guide
Encrypting Data on the Storage Volumes of Cluster Nodes

2. Amazon S3 extracts the encrypted data key from the S3 object, and then sends the encrypted data
key to AWS KMS with a Decrypt request. The request includes an encryption context (p. 12).

3. AWS KMS decrypts the encrypted data key using the same CMK that was used to encrypt it, and then
sends the decrypted (plaintext) data key to Amazon S3.

4. Amazon S3 uses the plaintext data key to decrypt the encrypted data, and then removes the plaintext
data key from memory as soon as possible after use.

5. Amazon S3 sends the decrypted data to the cluster.

Process for Encrypting Data on EMRFS with CSE-KMS

When you configure an Amazon EMR cluster to use CSE-KMS, the encryption process works like this:

1. When it's ready to store data in Amazon S3, the cluster sends a GenerateDataKey request to AWS KMS,
specifying the key ID of the CMK that you chose when you configured the cluster to use CSE-KMS. The
request includes encryption context; for more information, see Encryption Context (p. 252).

2. AWS KMS generates a unique data encryption key (data key) and then sends two copies of this data
key to the cluster. One copy is unencrypted (plaintext), and the other copy is encrypted under the
CMK.

3. The cluster uses the plaintext data key to encrypt the data, and then removes the plaintext data key
from memory as soon as possible after use.

4. The cluster combines the encrypted data and the encrypted copy of the data key together into a
single encrypted object.

5. The cluster sends the encrypted object to Amazon S3 for storage.

The decryption process works like this:

1. The cluster requests the encrypted data object from an S3 bucket.

2. Amazon S3 sends the encrypted object to the cluster.

3. The cluster extracts the encrypted data key from the encrypted object, and then sends the encrypted
data key to AWS KMS with a Decrypt request. The request includes encryption context (p. 12).

4. AWS KMS decrypts the encrypted data key using the same CMK that was used to encrypt it, and then
sends the decrypted (plaintext) data key to the cluster.

5. The cluster uses the plaintext data key to decrypt the encrypted data, and then removes the plaintext
data key from memory as soon as possible after use.

Encrypting Data on the Storage Volumes of Cluster
Nodes
An Amazon EMR cluster is a collection of Amazon Elastic Compute Cloud (Amazon EC2) instances. Each
instance in the cluster is called a cluster node or node. Each node can have two types of storage volumes:
instance store volumes, and Amazon Elastic Block Store (Amazon EBS) volumes. You can configure the
cluster to use Linux Unified Key Setup (LUKS) to encrypt both types of storage volumes on the nodes
(but not the boot volume of each node). This is called local disk encryption.

When you enable local disk encryption for a cluster, you can choose to encrypt the LUKS master key with
a CMK in AWS KMS. You must choose a custom CMK that you create; you cannot use an AWS managed
CMK. When you choose a custom CMK, you must ensure that your Amazon EMR cluster has permission to
use the CMK. For more information, see Using AWS KMS Customer Master Keys (CMKs) for Encryption in
the Amazon EMR Management Guide.

251

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://gitlab.com/cryptsetup/cryptsetup/blob/master/README.md
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-encryption-enable.html#emr-awskms-keys

AWS Key Management Service Developer Guide
Encryption Context

When you enable local disk encryption using a CMK, the encryption process works like this:

1. When each cluster node launches, it sends a GenerateDataKey request to AWS KMS, specifying the key
ID of the CMK that you chose when you enabled local disk encryption for the cluster.

2. AWS KMS generates a unique data encryption key (data key) and then sends two copies of this data
key to the node. One copy is unencrypted (plaintext), and the other copy is encrypted under the CMK.

3. The node uses a base64-encoded version of the plaintext data key as the password that protects the
LUKS master key. The node saves the encrypted copy of the data key on its boot volume.

4. If the node reboots, the rebooted node sends the encrypted data key to AWS KMS with a Decrypt
request.

5. AWS KMS decrypts the encrypted data key using the same CMK that was used to encrypt it, and then
sends the decrypted (plaintext) data key to the node.

6. The node uses the base64-encoded version of the plaintext data key as the password to unlock the
LUKS master key.

Encryption Context
Each AWS service that is integrated with AWS KMS can specify an encryption context (p. 12) when it
uses AWS KMS to generate data keys or to encrypt or decrypt data. Encryption context is additional
authenticated information that AWS KMS uses to check for data integrity. When a service specifies
encryption context for an encryption operation, it must specify the same encryption context for the
corresponding decryption operation or decryption will fail. Encryption context is also written to AWS
CloudTrail log files, which can help you understand why a given CMK was used.

The following section explain the encryption context that is used in each Amazon EMR encryption
scenario that uses a CMK.

Encryption Context for EMRFS Encryption with SSE-KMS
With SSE-KMS, the Amazon EMR cluster sends data to Amazon S3, and then Amazon S3 uses a CMK to
encrypt the data before saving it to an S3 bucket. In this case, Amazon S3 uses the Amazon Resource
Name (ARN) of the S3 object as encryption context with each GenerateDataKey and Decrypt request that
it sends to AWS KMS. The following example shows a JSON representation of the encryption context
that Amazon S3 uses.

{ "aws:s3:arn" : "arn:aws:s3:::S3_bucket_name/S3_object_key" }

Encryption Context for EMRFS Encryption with CSE-KMS
With CSE-KMS, the Amazon EMR cluster uses a CMK to encrypt data before sending it to Amazon S3 for
storage. In this case, the cluster uses the Amazon Resource Name (ARN) of the CMK as encryption context
with each GenerateDataKey and Decrypt request that it sends to AWS KMS. The following example
shows a JSON representation of the encryption context that the cluster uses.

{ "kms_cmk_id" : "arn:aws:kms:us-
east-2:111122223333:key/0987ab65-43cd-21ef-09ab-87654321cdef" }

Encryption Context for Local Disk Encryption with LUKS
When an Amazon EMR cluster uses local disk encryption with LUKS, the cluster nodes do not specify
encryption context with the GenerateDataKey and Decrypt requests that they send to AWS KMS.

252

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html

AWS Key Management Service Developer Guide
Amazon Redshift

How Amazon Redshift Uses AWS KMS
This topic discusses how Amazon Redshift uses AWS KMS to encrypt data.

Topics

• Amazon Redshift Encryption (p. 253)

• Encryption Context (p. 253)

Amazon Redshift Encryption
An Amazon Redshift data warehouse is a collection of computing resources called nodes, which are
organized into a group called a cluster. Each cluster runs an Amazon Redshift engine and contains one or
more databases.

Amazon Redshift uses a four-tier, key-based architecture for encryption. The architecture consists of data
encryption keys, a database key, a cluster key, and a master key.

Data encryption keys encrypt data blocks in the cluster. Each data block is assigned a randomly-
generated AES-256 key. These keys are encrypted by using the database key for the cluster.

The database key encrypts data encryption keys in the cluster. The database key is a randomly-generated
AES-256 key. It is stored on disk in a separate network from the Amazon Redshift cluster and passed to
the cluster across a secure channel.

The cluster key encrypts the database key for the Amazon Redshift cluster. You can use AWS KMS, AWS
CloudHSM, or an external hardware security module (HSM) to manage the cluster key. See the Amazon
Redshift Database Encryption documentation for more details.

The master key encrypts the cluster key. You can use a AWS KMS customer master key (p. 2) (CMK) as
the master key for Amazon Redshift. You can request encryption by checking the appropriate box in the
Amazon Redshift console. You can specify a customer managed CMK (p. 3) to use by choosing one from
the list that appears below the encryption box. If you do not specify a customer managed CMK, Amazon
Redshift uses the AWS managed CMK (p. 4) for Amazon Redshift under your account.

Important
Amazon Redshift supports only symmetric CMKs. You cannot use an asymmetric CMK as
the master key in an Amazon Redshift encryption workflow. To determine whether a CMK is
symmetric or asymmetric, see Identifying Symmetric and Asymmetric CMKs (p. 33).

Encryption Context
Each service that is integrated with AWS KMS specifies an encryption context (p. 12) when requesting
data keys, encrypting, and decrypting. The encryption context is additional authenticated data (AAD)
that AWS KMS uses to check for data integrity. That is, when an encryption context is specified for an
encryption operation, the service also specifies it for the decryption operation or decryption will not
succeed. Amazon Redshift uses the cluster ID and the creation time for the encryption context. In the
requestParameters field of a CloudTrail log file, the encryption context will look similar to this.

"encryptionContext": {
 "aws:redshift:arn": "arn:aws:redshift:region:account_ID:cluster:cluster_name",
 "aws:redshift:createtime": "20150206T1832Z"
},

253

https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-db-encryption.html
https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-db-encryption.html
https://docs.aws.amazon.com/crypto/latest/userguide/cryptography-concepts.html#term-aad

AWS Key Management Service Developer Guide
Amazon Relational Database Service (Amazon RDS)

You can search on the cluster name in your CloudTrail logs to understand what operations were
performed by using a customer master key (CMK). The operations include cluster encryption, cluster
decryption, and generating data keys.

How Amazon Relational Database Service (Amazon
RDS) Uses AWS KMS

You can use the Amazon Relational Database Service (Amazon RDS) to set up, operate, and scale a
relational database in the cloud. Optionally, you can choose to encrypt the data stored on your Amazon
RDS DB instance under a customer master key (p. 2) (CMK) in AWS KMS. To learn how to encrypt your
Amazon RDS resources under an AWS KMS CMK, see Encrypting Amazon RDS Resources in the Amazon
RDS User Guide.

Important
Amazon RDS supports only symmetric CMKs (p. 130). You cannot use an asymmetric
CMK (p. 130) to encrypt data in an Amazon RDS database. To determine whether a CMK is
symmetric or asymmetric, see Identifying Symmetric and Asymmetric CMKs (p. 33).

Amazon RDS builds on Amazon Elastic Block Store (Amazon EBS) encryption to provide full disk
encryption for database volumes. For more information about how Amazon EBS uses AWS KMS to
encrypt volumes, see How Amazon Elastic Block Store (Amazon EBS) Uses AWS KMS (p. 243).

When you create an encrypted DB instance with Amazon RDS, Amazon RDS creates an encrypted EBS
volume on your behalf to store the database. Data stored at rest on the volume, database snapshots,
automated backups, and read replicas are all encrypted under the KMS CMK that you specified when you
created the DB instance.

Amazon RDS Encryption Context
When Amazon RDS uses your KMS CMK, or when Amazon EBS uses it on behalf of Amazon RDS, the
service specifies an encryption context (p. 12). The encryption context is additional authenticated data
(AAD) that AWS KMS uses to ensure data integrity. When an encryption context is specified for an
encryption operation, the service must specify the same encryption context for the decryption operation.
Otherwise, decryption fails. The encryption context is also written to your AWS CloudTrail logs to help
you understand why a given CMK was used. Your CloudTrail logs might contain many entries describing
the use of a CMK, but the encryption context in each log entry can help you determine the reason for
that particular use.

At minimum, Amazon RDS always uses the DB instance ID for the encryption context, as in the following
JSON-formatted example:

{ "aws:rds:db-id": "db-CQYSMDPBRZ7BPMH7Y3RTDG5QY" }

This encryption context can help you identify the DB instance for which your CMK was used.

When your CMK is used for a specific DB instance and a specific EBS volume, both the DB instance ID and
the EBS volume ID are used for the encryption context, as in the following JSON-formatted example:

{
 "aws:rds:db-id": "db-BRG7VYS3SVIFQW7234EJQOM5RQ",
 "aws:ebs:id": "vol-ad8c6542"
}

254

https://aws.amazon.com/rds/
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.DBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.Encryption.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html
https://docs.aws.amazon.com/crypto/latest/userguide/cryptography-concepts.html#term-aad
https://aws.amazon.com/cloudtrail/

AWS Key Management Service Developer Guide
AWS Secrets Manager

How AWS Secrets Manager Uses AWS KMS
AWS Secrets Manager is an AWS service that encrypts and stores your secrets, and transparently decrypts
and returns them to you in plaintext. It's designed especially to store application secrets, such as
login credentials, that change periodically and should not be hard-coded or stored in plaintext in the
application. In place of hard-coded credentials or table lookups, your application calls Secrets Manager.

Secrets Manager also supports features that periodically rotate the secrets associated with commonly
used databases. It always encrypts newly rotated secrets before they are stored.

Secrets Manager integrates with AWS Key Management Service (AWS KMS) to encrypt every version of
every secret with a unique data encryption key (p. 4) that is protected by an AWS KMS customer master
key (p. 2) (CMK). This integration protects your secrets under encryption keys that never leave AWS KMS
unencrypted. It also enables you to set custom permissions on the master key and audit the operations
that generate, encrypt, and decrypt the data keys that protect your secrets.

Topics

• Protecting the Secret Value (p. 255)

• Encrypting and Decrypting Secrets (p. 255)

• Using Your AWS KMS CMK (p. 257)

• Authorizing Use of the CMK (p. 258)

• Secrets Manager Encryption Context (p. 259)

• Monitoring Secrets Manager Interaction with AWS KMS (p. 260)

Protecting the Secret Value
To protect a secret, Secrets Manager encrypts the secret value in a secret.

In Secrets Manager, a secret consists of a secret value, also known as protected secret text or encrypted
secret data, and related metadata and version information. The secret value can be any string or binary
data of up to 10,240 bytes, but it is typically a collection of name-value pairs that comprise the login
information for a server or database.

Secrets Manager always encrypts the entire secret value before it stores the secret. It decrypts the secret
value transparently whenever you get or change the secret value. There is no option to enable or disable
encryption. To encrypt and decrypt the secret value, Secrets Manager uses AWS KMS.

Encrypting and Decrypting Secrets
To protect secrets, Secrets Manager uses envelope encryption (p. 11) with AWS KMS customer master
keys (p. 2) (CMKs) and data keys (p. 4).

Secrets Manager uses a unique data key to protect each secret value. Whenever the secret value in a
secret changes, Secrets Manager generates a new data key to protect it. The data key is encrypted under
an AWS KMS CMK and stored in the metadata of the secret, as shown in the following image. To decrypt
the secret, Secrets Manager must first decrypt the encrypted data key using the CMK in AWS KMS.

255

https://docs.aws.amazon.com/secretsmanager/latest/userguide/Introduction.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/terms-concepts.html#term_secret

AWS Key Management Service Developer Guide
Encrypting and Decrypting Secrets

An AWS KMS CMK for Each Secret
Each secret is associated with an AWS managed or customer managed customer master key (p. 2) (CMK).
Customer managed CMKs allow authorized users to control access (p. 46) to the CMK through policies
and grants, manage automatic rotation (p. 142), and use imported key material (p. 147).

Important
Secrets Manager supports only symmetric CMKs (p. 130). You cannot use an asymmetric
CMK (p. 130) to encrypt your secrets. To determine whether a CMK is symmetric or asymmetric,
see Identifying Symmetric and Asymmetric CMKs (p. 33).

When you create a new secret, you can specify any symmetric customer managed CMK in the account
and region, or the AWS managed CMK for Secrets Manager, aws/secretsmanager. If you do not specify
a CMK, or you select the console default value, DefaultEncryptionKey, Secrets Manager creates the
aws/secretsmanager CMK, if it does not exist, and associates it with the secret. You can use the same
CMK or different CMKs for each secret in your account.

You can change the CMK for a secret at any time, either in the Secrets Manager console, or by using the
UpdateSecret operation. When you change the CMK, Secrets Manager does not re-encrypt the existing
secret value under the new CMK. However, the next time that the secret value changes, Secrets Manager
encrypts it under the new CMK.

To find the CMK that is associated with a secret, use the ListSecrets or DescribeSecret operations. When
the secret is associated with the AWS managed CMK for Secrets Manager (aws/secretsmanager), these
operations do not return a CMK identifier.

Secrets Manager does not use the CMK to encrypt the secret value directly. Instead, it uses the CMK to
generate and encrypt a unique data key, and it uses the data key to encrypt the secret value.

A Unique Data Key for Each Secret Value
Every time that you create or change the secret value in a secret, Secrets Manager uses the CMK that
is associated with the secret to generate and encrypt a unique 256-bit Advanced Encryption Standard
(AES) symmetric data key (p. 4). Secrets Manager uses the plaintext data key to encrypt the secret value
outside of AWS KMS, and then removes it from memory. It stores the encrypted copy of the data key in
the metadata of the secret.

256

https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_UpdateSecret.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_ListSecrets.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_DescribeSecret.html

AWS Key Management Service Developer Guide
Using Your AWS KMS CMK

The secret value is ultimately protected by the CMK, which never leaves AWS KMS unencrypted. Before
Secrets Manager can decrypt the secret, it must ask AWS KMS to decrypt the encrypted data key.

Encrypting a Secret Value

To encrypt the secret value in a secret, Secrets Manager uses the following process.

1. Secrets Manager calls the AWS KMS GenerateDataKey operation with the ID of the CMK for the secret
and a request for a 256-bit AES symmetric key. AWS KMS returns a plaintext data key and a copy of
that data key encrypted under the CMK.

2. Secrets Manager uses the plaintext data key and the Advanced Encryption Standard (AES) algorithm
to encrypt the secret value outside of AWS KMS. It removes the plaintext key from memory as soon as
possible after using it.

3. Secrets Manager stores the encrypted data key in the metadata of the secret so it is available to
decrypt the secret value. However, none of the Secrets Manager APIs return the encrypted secret or
the encrypted data key.

Decrypting a Secret Value

To decrypt an encrypted secret value, Secrets Manager must first decrypt the encrypted data key.
Because the data key is encrypted under the CMK for the secret in AWS KMS, Secrets Manager must
make a request to AWS KMS.

To decrypt an encrypted secret value:

1. Secrets Manager calls the AWS KMS Decrypt operation and passes in the encrypted data key.

2. AWS KMS uses the CMK for the secret to decrypt the data key. It returns the plaintext data key.

3. Secrets Manager uses the plaintext data key to decrypt the secret value. Then it removes the data key
from memory as soon as possible.

Using Your AWS KMS CMK
Secrets Manager uses the customer master key (p. 2) (CMK) that is associated with a secret to generate
a data key for each secret value. It also uses the CMK to decrypt that data key when it needs to decrypt
the encrypted secret value. You can track the requests and responses in AWS CloudTrail events, Amazon
CloudWatch Logs (p. 260), and audit trails.

The following Secrets Manager operations trigger a request to use your AWS KMS CMK.

GenerateDataKey

Secrets Manager calls the AWS KMS GenerateDataKey operation in response to the following Secrets
Manager operations.

• CreateSecret – If the new secret includes a secret value, Secrets Manager requests a new data key
to encrypt it.

• PutSecretValue– Secrets Manager requests a new data key to encrypt the specified secret value.

• UpdateSecret – If the update changes the secret value, Secrets Manager requests a new data key
to encrypt the new secret value.

Note
The RotateSecret operation does not call GenerateDataKey, because it does not change
the secret value. However, if the Lambda function that RotateSecret invokes changes

257

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_CreateSecret.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_PutSecretValue.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_UpdateSecret.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_RotateSecret.html

AWS Key Management Service Developer Guide
Authorizing Use of the CMK

the secret value, its call to the PutSecretValue operation triggers a GenerateDataKey
request.

Decrypt

To decrypt an encrypted secret value, Secrets Manager calls the AWS KMS Decrypt operation to
decrypt the encrypted data key in the secret. Then, it uses the plaintext data key to decrypt the
encrypted secret value.

Secrets Manager calls the Decrypt operation in response to the following Secrets Manager
operations.
• GetSecretValue – Secrets Manager decrypts the secret value before returning it to the caller.
• PutSecretValue and UpdateSecret – Most PutSecretValue and UpdateSecret requests do not

trigger a Decrypt operation. However, when a PutSecretValue or UpdateSecret request
attempts to change the secret value in an existing version of a secret, Secrets Manager decrypts
the existing secret value and compares it to the secret value in the request to confirm that they are
the same. This action ensures the that Secrets Manager operations are idempotent.

Validating Access to the CMK

When you establish or change the CMK that is associated with secret, Secrets Manager calls the
GenerateDataKey and Decrypt operations with the specified CMK. These calls confirm that the
caller has permission to use the CMK for these operation. Secrets Manager discards the results of
these operations; it does not use them in any cryptographic operation.

You can identify these validation calls because the value of the SecretVersionId key encryption
context (p. 259) in these requests is RequestToValidateKeyAccess.

Note
In the past, Secrets Manager validation calls did not include an encryption context. You
might find calls with no encryption context in older AWS CloudTrail logs.

Authorizing Use of the CMK
When Secrets Manager uses a customer master key (p. 2) (CMK) in cryptographic operations, it acts on
behalf of the user who is creating or changing the secret value in the secret.

To use the AWS KMS customer master key (CMK) for a secret on your behalf, the user must have the
following permissions. You can specify these required permissions in an IAM policy or key policy.

• kms:GenerateDataKey
• kms:Decrypt

To allow the CMK to be used only for requests that originate in Secrets Manager, you can use the
kms:ViaService condition key (p. 111) with the secretsmanager.<region>.amazonaws.com value.

You can also use the keys or values in the encryption context (p. 259) as a condition for using the CMK
for cryptographic operations. For example, you can use a string condition operator in an IAM or key
policy document, or use a grant constraint in a grant.

Key Policy of the AWS Managed CMK
The key policy for the AWS managed CMK for Secrets Manager gives users permission to use the CMK for
specified operations only when Secrets Manager makes the request on the user's behalf. The key policy
does not allow any user to use the CMK directly.

258

https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_Decrypt.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_Decrypt.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_GetSecretValue.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_PutSecretValue.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_UpdateSecret.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html#Conditions_String
https://docs.aws.amazon.com/kms/latest/APIReference/API_GrantConstraints.html

AWS Key Management Service Developer Guide
Secrets Manager Encryption Context

This key policy, like the policies of all AWS managed keys (p. 2), is established by the service. You cannot
change the key policy, but you can view it at any time. For details, see Viewing a Key Policy (p. 61).

The policy statements in the key policy have the following effect:

• Allow users in the account to use the CMK for cryptographic operations only when the request comes
from Secrets Manager on their behalf. The kms:ViaService condition key enforces this restriction.

• Allows the AWS account to create IAM policies that allow users to view CMK properties and revoke
grants.

• Although Secrets Manager does not use grants to gain access to the CMK, the policy also allows
Secrets Manager to create grants (p. 115) for the CMK on the user's behalf and allows the account to
revoke any grant that allows Secrets Manager to use the CMK. These are standard elements of policy
document for an AWS managed CMK.

The following is a key policy for an example AWS managed CMK for Secrets Manager.

{
 "Version" : "2012-10-17",
 "Id" : "auto-secretsmanager-1",
 "Statement" : [{
 "Sid" : "Allow access through AWS Secrets Manager for all principals in the account
 that are authorized to use AWS S
ecrets Manager",
 "Effect" : "Allow",
 "Principal" : {
 "AWS" : "*"
 },
 "Action" : ["kms:Encrypt", "kms:Decrypt", "kms:ReEncrypt*", "kms:GenerateDataKey*",
 "kms:CreateGrant", "kms:Describ
eKey"],
 "Resource" : "*",
 "Condition" : {
 "StringEquals" : {
 "kms:ViaService" : "secretsmanager.us-west-2.amazonaws.com",
 "kms:CallerAccount" : "111122223333"
 }
 }
 },{
 "Sid" : "Allow direct access to key metadata to the account",
 "Effect" : "Allow",
 "Principal" : {
 "AWS" : "arn:aws:iam::111122223333:root"
 },
 "Action" : ["kms:Describe*", "kms:Get*", "kms:List*", "kms:RevokeGrant"],
 "Resource" : "*"
 }]
}

Secrets Manager Encryption Context
An encryption context (p. 12) is a set of key–value pairs that contain arbitrary nonsecret data. When
you include an encryption context in a request to encrypt data, AWS KMS cryptographically binds the
encryption context to the encrypted data. To decrypt the data, you must pass in the same encryption
context.

In its GenerateDataKey and Decrypt requests to AWS KMS, Secrets Manager uses an encryption context
with two name–value pairs that identify the secret and its version, as shown in the following example.
The names do not vary, but combined encryption context values will be different for each secret value.

"encryptionContext": {

259

https://docs.aws.amazon.com/kms/latest/APIReference/API_RevokeGrant.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html

AWS Key Management Service Developer Guide
Monitoring Secrets Manager Interaction with AWS KMS

 "SecretARN": "arn:aws:secretsmanager:us-west-2:111122223333:secret:test-secret-a1b2c3",
 "SecretVersionId": "EXAMPLE1-90ab-cdef-fedc-ba987SECRET1"
}

You can use the encryption context to identify these cryptographic operation in audit records and logs,
such as AWS CloudTrail and Amazon CloudWatch Logs, and as a condition for authorization in policies
and grants.

The Secrets Manager encryption context consists of two name-value pairs.

• SecretARN – The first name–value pair identifies the secret. The key is SecretARN. The value is the
Amazon Resource Name (ARN) of the secret.

"SecretARN": "ARN of an Secrets Manager secret"

For example, if the ARN of the secret is arn:aws:secretsmanager:us-
west-2:111122223333:secret:test-secret-a1b2c3, the encryption context would include the
following pair.

"SecretARN": "arn:aws:secretsmanager:us-west-2:111122223333:secret:test-secret-a1b2c3"

• SecretVersionId – The second name–value pair identifies the version of the secret. The key is
SecretVersionId. The value is the version ID.

"SecretVersionId": "<version-id>"

For example, if the version ID of the secret is EXAMPLE1-90ab-cdef-fedc-ba987SECRET1, the
encryption context would include the following pair.

"SecretVersionId": "EXAMPLE1-90ab-cdef-fedc-ba987SECRET1"

When you establish or change the CMK for a secret, Secrets Manager sends GenerateDataKey and
Decrypt requests to AWS KMS to validate that the caller has permission to use the CMK for these
operations. It discards the responses; it does not use them on the secret value.

In these validation requests, the value of the SecretARN is the actual ARN of the secret, but the
SecretVersionId value is RequestToValidateKeyAccess, as shown in the following example
encryption context. This special value helps you to identify validation requests in logs and audit trails.

"encryptionContext": {
 "SecretARN": "arn:aws:secretsmanager:us-west-2:111122223333:secret:test-secret-a1b2c3",
 "SecretVersionId": "RequestToValidateKeyAccess"
}

Note
In the past, Secrets Manager validation requests did not include an encryption context. You
might find calls with no encryption context in older AWS CloudTrail logs.

Monitoring Secrets Manager Interaction with AWS
KMS
You can use AWS CloudTrail and Amazon CloudWatch Logs to track the requests that Secrets Manager
sends to AWS KMS on your behalf.

260

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html

AWS Key Management Service Developer Guide
Monitoring Secrets Manager Interaction with AWS KMS

GenerateDataKey

When you create or change (p. 257) the secret value in a secret, Secrets Manager sends a
GenerateDataKey request to AWS KMS that specifies the CMK for the secret.

The event that records the GenerateDataKey operation is similar to the following example event.
The request is invoked by secretsmanager.amazonaws.com. The parameters include the Amazon
Resource Name (ARN) of the CMK for the secret, a key specifier that requires a 256-bit key, and the
encryption context (p. 259) that identifies the secret and version.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AROAIGDTESTANDEXAMPLE:user01",
 "arn": "arn:aws:sts::111122223333:assumed-role/Admin/user01",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2018-05-31T23:23:41Z"
 }
 },
 "invokedBy": "secretsmanager.amazonaws.com"
 },
 "eventTime": "2018-05-31T23:23:41Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "GenerateDataKey",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "secretsmanager.amazonaws.com",
 "userAgent": "secretsmanager.amazonaws.com",
 "requestParameters": {
 "keyId": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "keySpec": "AES_256",
 "encryptionContext": {
 "SecretARN": "arn:aws:secretsmanager:us-west-2:111122223333:secret:test-
secret-a1b2c3",
 "SecretVersionId": "EXAMPLE1-90ab-cdef-fedc-ba987SECRET1"
 }
 },
 "responseElements": null,
 "requestID": "a7d4dd6f-6529-11e8-9881-67744a270888",
 "eventID": "af7476b6-62d7-42c2-bc02-5ce86c21ed36",
 "readOnly": true,
 "resources": [
 {
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "accountId": "111122223333",
 "type": "AWS::KMS::Key"
 }
],
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
}

Decrypt

Whenever you get or change (p. 257) the secret value of a secret, Secrets Manager sends a Decrypt
request to AWS KMS to decrypt the encrypted data key.

261

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html

AWS Key Management Service Developer Guide
Amazon Simple Email Service (Amazon SES)

The event that records the Decrypt operation is similar to the following example event. The user is
the principal in your AWS account who is accessing the table. The parameters include the encrypted
table key (as a ciphertext blob) and the encryption context (p. 259) that identifies the table and the
AWS account. AWS KMS derives the ID of the CMK from the ciphertext.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AROAIGDTESTANDEXAMPLE:user01",
 "arn": "arn:aws:sts::111122223333:assumed-role/Admin/user01",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2018-05-31T23:36:09Z"
 }
 },
 "invokedBy": "secretsmanager.amazonaws.com"
 },
 "eventTime": "2018-05-31T23:36:09Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "Decrypt",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "secretsmanager.amazonaws.com",
 "userAgent": "secretsmanager.amazonaws.com",
 "requestParameters": {
 "encryptionContext": {
 "SecretARN": "arn:aws:secretsmanager:us-west-2:111122223333:secret:test-
secret-a1b2c3",
 "SecretVersionId": "EXAMPLE1-90ab-cdef-fedc-ba987SECRET1"
 }
 },
 "responseElements": null,
 "requestID": "658c6a08-652b-11e8-a6d4-ffee2046048a",
 "eventID": "f333ec5c-7fc1-46b1-b985-cbda13719611",
 "readOnly": true,
 "resources": [
 {
 "ARN": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "accountId": "111122223333",
 "type": "AWS::KMS::Key"
 }
],
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
}

How Amazon Simple Email Service (Amazon SES)
Uses AWS KMS

You can use Amazon Simple Email Service (Amazon SES) to receive email, and (optionally) to encrypt
the received email messages before storing them in an Amazon Simple Storage Service (Amazon S3)
bucket that you choose. When you configure Amazon SES to encrypt email messages, you must choose
the AWS KMS customer master key (p. 2) (CMK) under which Amazon SES encrypts the messages. You
can choose the AWS managed CMK (p. 4) for Amazon SES (its alias is aws/ses), or you can choose a
symmetric customer managed CMK (p. 3) that you created in AWS KMS.

262

AWS Key Management Service Developer Guide
Overview of Amazon SES Encryption Using AWS KMS

Important
Amazon SES supports only symmetric CMKs (p. 130). You cannot use an asymmetric
CMK (p. 130) to encrypt your Amazon SES email messages. To determine whether a CMK is
symmetric or asymmetric, see Identifying Symmetric and Asymmetric CMKs (p. 33).

For more information about receiving email using Amazon SES, go to Receiving Email with Amazon SES
in the Amazon Simple Email Service Developer Guide.

Topics
• Overview of Amazon SES Encryption Using AWS KMS (p. 263)
• Amazon SES Encryption Context (p. 263)
• Giving Amazon SES Permission to Use Your AWS KMS Customer Master Key (CMK) (p. 264)
• Getting and Decrypting Email Messages (p. 264)

Overview of Amazon SES Encryption Using AWS KMS
When you configure Amazon SES to receive email and encrypt the email messages before saving them to
your S3 bucket, the process works like this:

1. You create a receipt rule for Amazon SES, specifying the S3 action, an S3 bucket for storage, and a
KMS customer master key (CMK) for encryption.

2. Amazon SES receives an email message that matches your receipt rule.
3. Amazon SES requests a unique data key encrypted with the KMS CMK that you specified in the

applicable receipt rule.
4. AWS KMS creates a new data key, encrypts it with the specified CMK, and then sends the encrypted

and plaintext copies of the data key to Amazon SES.
5. Amazon SES uses the plaintext data key to encrypt the email message and then removes the

plaintext data key from memory as soon as possible after use.
6. Amazon SES puts the encrypted email message and the encrypted data key in the specified S3

bucket. The encrypted data key is stored as metadata with the encrypted email message.

To accomplish Step 3 (p. 263) through Step 6 (p. 263), Amazon SES uses the AWS–provided Amazon
S3 encryption client. Use the same client to retrieve your encrypted email messages from Amazon S3
and decrypt them. For more information, see Getting and Decrypting Email Messages (p. 264).

Amazon SES Encryption Context
When Amazon SES requests a data key to encrypt your received email messages (Step 3 (p. 263) in the
Overview of Amazon SES Encryption Using AWS KMS (p. 263)), it includes an encryption context (p. 12)
in the request. The encryption context provides additional authenticated data (AAD) that AWS KMS
uses to ensure data integrity. The encryption context is also written to your AWS CloudTrail log files,
which can help you understand why a given customer master key (CMK) was used. Amazon SES uses the
following encryption context:

• The ID of the AWS account in which you've configured Amazon SES to receive email messages
• The rule name of the Amazon SES receipt rule that invoked the S3 action on the email message
• The Amazon SES message ID for the email message

The following example shows a JSON representation of the encryption context that Amazon SES uses:

{

263

https://docs.aws.amazon.com/ses/latest/DeveloperGuide/receiving-email.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/receiving-email-receipt-rules.html
https://docs.aws.amazon.com/crypto/latest/userguide/cryptography-concepts.html#term-aad

AWS Key Management Service Developer Guide
Giving Amazon SES Permission to Use Your

AWS KMS Customer Master Key (CMK)

 "aws:ses:source-account": "111122223333",
 "aws:ses:rule-name": "example-receipt-rule-name",
 "aws:ses:message-id": "d6iitobk75ur44p8kdnnp7g2n800"
}

Giving Amazon SES Permission to Use Your AWS KMS
Customer Master Key (CMK)
You can use the default customer master key (CMK) in your account for Amazon SES with the alias aws/
ses, or you can use a custom CMK you create. If you use the default CMK for Amazon SES, you don't
need to perform any steps to give Amazon SES permission to use it. However, to specify a custom CMK
when you add the S3 action to your Amazon SES receipt rule, you must ensure that Amazon SES has
permission to use the CMK to encrypt your email messages. To give Amazon SES permission to use your
custom CMK, add the following statement to your CMK's key policy (p. 50):

{
 "Sid": "Allow SES to encrypt messages using this master key",
 "Effect": "Allow",
 "Principal": {"Service": "ses.amazonaws.com"},
 "Action": [
 "kms:Encrypt",
 "kms:GenerateDataKey*"
],
 "Resource": "*",
 "Condition": {
 "Null": {
 "kms:EncryptionContext:aws:ses:rule-name": false,
 "kms:EncryptionContext:aws:ses:message-id": false
 },
 "StringEquals": {"kms:EncryptionContext:aws:ses:source-account": "ACCOUNT-ID-WITHOUT-
HYPHENS"}
 }
}

Replace ACCOUNT-ID-WITHOUT-HYPHENS with the 12-digit ID of the AWS account in which you've
configured Amazon SES to receive email messages. This policy statement allows Amazon SES to encrypt
data with this CMK only under these conditions:

• Amazon SES must specify aws:ses:rule-name and aws:ses:message-id in the
EncryptionContext of their AWS KMS API requests.

• Amazon SES must specify aws:ses:source-account in the EncryptionContext of their AWS
KMS API requests, and the value for aws:ses:source-account must match the AWS account ID
specified in the key policy.

For more information about the encryption context that Amazon SES uses when encrypting your email
messages, see Amazon SES Encryption Context (p. 263). For general information about how AWS KMS
uses the encryption context, see encryption context (p. 12).

Getting and Decrypting Email Messages
Amazon SES does not have permission to decrypt your encrypted email messages and cannot decrypt
them for you. You must write code to get your email messages from Amazon S3 and decrypt them. To
make this easier, use the Amazon S3 encryption client. The following AWS SDKs include the Amazon S3
encryption client:

• AWS SDK for Java – See AmazonS3EncryptionClient in the AWS SDK for Java API Reference.

264

https://docs.aws.amazon.com/ses/latest/DeveloperGuide/receiving-email-action-s3.html
https://aws.amazon.com/sdk-for-java/
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/s3/AmazonS3EncryptionClient.html

AWS Key Management Service Developer Guide
Amazon Simple Storage Service (Amazon S3)

• AWS SDK for Ruby – See Aws::S3::Encryption::Client in the AWS SDK for Ruby API Reference.

• AWS SDK for .NET – See AmazonS3EncryptionClient in the AWS SDK for .NET API Reference.

• AWS SDK for Go – See s3crypto in the AWS SDK for Go API Reference.

The Amazon S3 encryption client simplifies the work of constructing the necessary requests to Amazon
S3 to retrieve the encrypted email message and to AWS KMS to decrypt the message's encrypted data
key, and of decrypting the email message. For example, to successfully decrypt the encrypted data key
you must pass the same encryption context that Amazon SES passed when requesting the data key from
AWS KMS (Step 3 (p. 263) in the Overview of Amazon SES Encryption Using AWS KMS (p. 263)). The
Amazon S3 encryption client handles this, and much of the other work, for you.

For sample code that uses the Amazon S3 encryption client in the AWS SDK for Java to do client-side
decryption, see the following:

• Example: Client-Side Encryption (Option 1: Using an AWS KMS–Managed Customer Master Key (AWS
SDK for Java)) in the Amazon Simple Storage Service Developer Guide.

• Amazon S3 Encryption with AWS Key Management Service on the AWS Developer Blog.

How Amazon Simple Storage Service (Amazon S3)
Uses AWS KMS

This topic discusses how to protect data at rest within Amazon S3 data centers by using AWS KMS. There
are two ways to use AWS KMS with Amazon S3. You can use server-side encryption to protect your
data with a master key or you can use an AWS KMS customer master key (CMK) with the Amazon S3
Encryption Client to protect your data on the client side.

Topics

• Server-Side Encryption: Using SSE-KMS (p. 265)

• Using the Amazon S3 Encryption Client (p. 266)

• Encryption Context (p. 266)

Server-Side Encryption: Using SSE-KMS
You can protect data at rest in Amazon S3 by using three different modes of server-side encryption: SSE-
S3, SSE-C, or SSE-KMS.

• SSE-S3 requires that Amazon S3 manage the data and master encryption keys. For more information
about SSE-S3, see Protecting Data Using Server-Side Encryption with Amazon S3-Managed Encryption
Keys (SSE-S3).

• SSE-C requires that you manage the encryption key. For more information about SSE-C, see Protecting
Data Using Server-Side Encryption with Customer-Provided Encryption Keys (SSE-C).

• SSE-KMS requires that AWS manage the data key but you manage the customer master key (p. 2)
(CMK) in AWS KMS.

The remainder of this topic discusses how to protect data by using server-side encryption with AWS
KMS-managed keys (SSE-KMS).

You can request encryption and select a CMK by using the Amazon S3 console or API. In the console,
check the appropriate box to perform encryption and select your CMK from the list. For the Amazon S3

265

https://aws.amazon.com/sdk-for-ruby/
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/S3/Encryption/Client.html
https://aws.amazon.com/sdk-for-net/
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/index.html?page=S3/TS3EncryptionS3EncryptionClient.html&tocid=Amazon_S3_Encryption_AmazonS3EncryptionClient
https://aws.amazon.com/sdk-for-go/
https://docs.aws.amazon.com/sdk-for-go/api/service/s3/s3crypto/
https://docs.aws.amazon.com/AmazonS3/latest/dev/client-side-using-kms-java.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/client-side-using-kms-java.html
https://aws.amazon.com/blogs/developer/amazon-s3-encryption-with-aws-key-management-service/
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingServerSideEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingServerSideEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/ServerSideEncryptionCustomerKeys.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/ServerSideEncryptionCustomerKeys.html

AWS Key Management Service Developer Guide
Using the Amazon S3 Encryption Client

API, specify encryption and choose your CMK by setting the appropriate headers in a GET or PUT request.
For more information, see Protecting Data Using Server-Side Encryption with AWS KMS-Managed Keys
(SSE-KMS).

Important
Amazon S3 supports only symmetric CMKs (p. 130). You cannot use an asymmetric CMK (p. 130)
to encrypt your data in Amazon S3. To determine whether a CMK is symmetric or asymmetric,
see Identifying Symmetric and Asymmetric CMKs (p. 33).

You can choose a customer managed CMK (p. 3) or the AWS managed CMK (p. 4) for Amazon S3 in your
account. If you choose to encrypt your data, AWS KMS and Amazon S3 perform the following actions:

• Amazon S3 requests a plaintext data key and a copy of the key encrypted under the specified CMK.
• AWS KMS creates a data key, encrypts it by using the master key, and sends both the plaintext data key

and the encrypted data key to Amazon S3.
• Amazon S3 encrypts the data using the data key and removes the plaintext key from memory as soon

as possible after use.
• Amazon S3 stores the encrypted data key as metadata with the encrypted data.

Amazon S3 and AWS KMS perform the following actions when you request that your data be decrypted.

• Amazon S3 sends the encrypted data key to AWS KMS.
• AWS KMS decrypts the key by using the appropriate master key and sends the plaintext key back to

Amazon S3.
• Amazon S3 decrypts the ciphertext and removes the plaintext data key from memory as soon as

possible.

Using the Amazon S3 Encryption Client
You can use the Amazon S3 Encryption Client in the AWS SDK in your own application to encrypt objects
and upload them to Amazon S3. This method allows you to encrypt your data locally to ensure its
security as it passes to the Amazon S3 service. The Amazon S3 service receives your encrypted data; it
does not play a role in encrypting or decrypting it.

The Amazon S3 Encryption Client encrypts the object by using envelope encryption. The client calls
AWS KMS as a part of the encryption call you make when you pass your data to the client. AWS KMS
verifies that you are authorized to use the customer master key (p. 2) (CMK) that you and, if so, returns
a new plaintext data key and the data key encrypted under the CMK. The Amazon S3 Encryption Client
encrypts the data by using the plaintext key and then deletes the key from memory. The encrypted data
key is sent to Amazon S3 to store alongside your encrypted data.

Encryption Context
Each service that is integrated with AWS KMS specifies an encryption context (p. 12) when requesting
data keys, encrypting, and decrypting. The encryption context is additional authenticated data
(AAD) that AWS KMS uses to check for data integrity. When an encryption context is specified for an
encryption operation, Amazon S3 specifies the same encryption the decryption operation. Otherwise,
the decryption fails. If you are using SSE-KMS or the Amazon S3 encryption client to perform encryption,
Amazon S3 uses the bucket path as the encryption context. In the requestParameters field of a
CloudTrail log file, the encryption context will look similar to this.

"encryptionContext": {
 "aws:s3:arn": "arn:aws:s3:::bucket_name/file_name"

266

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingClientSideEncryption.html
https://docs.aws.amazon.com/crypto/latest/userguide/cryptography-concepts.html#term-aad

AWS Key Management Service Developer Guide
AWS Systems Manager Parameter Store

},

How AWS Systems Manager Parameter Store Uses
AWS KMS

With AWS Systems Manager Parameter Store, you can create secure string parameters, which are
parameters that have a plaintext parameter name and an encrypted parameter value. Parameter Store
uses AWS KMS to encrypt and decrypt the parameter values of secure string parameters.

With Parameter Store you can create, store, and manage data as parameters with values. You can create
a parameter in Parameter Store and use it in multiple applications and services subject to policies and
permissions that you design. When you need to change a parameter value, you change one instance,
rather than managing error-prone changes to numerous sources. Parameter Store supports a hierarchical
structure for parameter names, so you can qualify a parameter for specific uses.

To manage sensitive data, you can create secure string parameters. Parameter Store uses AWS KMS
customer master keys (CMKs) to encrypt the parameter values of secure string parameters when you
create or change them. It also uses CMKs to decrypt the parameter values when you access them. You
can use the AWS managed CMK (p. 4) that Parameter Store creates for your account or specify your own
customer managed CMK (p. 3).

Important
Parameter Store supports only symmetric CMKs (p. 130). You cannot use an asymmetric
CMK (p. 130) to encrypt your parameters. To determine whether a CMK is symmetric or
asymmetric, see Identifying Symmetric and Asymmetric CMKs (p. 33).

Parameter Store supports two tiers of secure string parameters: standard and advanced. Standard
parameters, which cannot exceed 4096 bytes, are encrypted and decrypted directly under the CMK
that you specify. To encrypt and decrypt advanced secure string parameters, Parameter Store uses
envelope encryption with the AWS Encryption SDK. You can convert a standard secure string parameter
to an advanced parameter, but you cannot convert an advanced parameter to a standard one. For more
information about the difference between standard and advanced secure string parameters, see About
Systems Manager Advanced Parameters in the AWS Systems Manager User Guide.

Topics
• Protecting Standard Secure String Parameters (p. 267)
• Protecting Advanced Secure String Parameters (p. 269)
• Setting Permissions to Encrypt and Decrypt Parameter Values (p. 272)
• Parameter Store Encryption Context (p. 274)
• Troubleshooting CMK Issues in Parameter Store (p. 275)

Protecting Standard Secure String Parameters
Parameter Store does not perform any cryptographic operations. Instead, it relies on AWS KMS to
encrypt and decrypt secure string parameter values. When you create or change a standard secure string
parameter value, Parameter Store calls the AWS KMS Encrypt operation. This operation uses a symmetric
AWS KMS CMK directly to encrypt the parameter value instead of using the CMK to generate a data
key (p. 4).

You can select the CMK that Parameter Store uses to encrypt the parameter value. If you do not specify a
CMK, Parameter Store uses the AWS managed CMK that Systems Manager automatically creates in your
account. This CMK has the aws/ssm alias.

267

https://docs.aws.amazon.com/systems-manager/latest/userguide/sysman-paramstore-about.html#sysman-paramstore-securestring
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-paramstore.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/
https://docs.aws.amazon.com/systems-manager/latest/userguide/parameter-store-advanced-parameters.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/parameter-store-advanced-parameters.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html

AWS Key Management Service Developer Guide
Protecting Standard Secure String Parameters

To view the default aws/ssm CMK for your account, use the DescribeKey operation in the AWS KMS API.
The following example uses the describe-key command in the AWS Command Line Interface (AWS
CLI) with the aws/ssm alias name.

aws kms describe-key --key-id alias/aws/ssm

To create a standard secure string parameter, use the PutParameter operation in the Systems Manager
API. Omit the Tier parameter or specify a value of Standard, which is the default. Include a Type
parameter with a value of SecureString. To specify an AWS KMS CMK, use the KeyId parameter. The
default is the AWS managed CMK for your account, aws/ssm.

Parameter Store then calls the AWS KMS Encrypt operation with the CMK and the plaintext parameter
value. AWS KMS returns the encrypted parameter value, which Parameter Store stores with the
parameter name.

The following example uses the Systems Manager put-parameter command and its --type parameter
in the AWS CLI to create a secure string parameter. Because the command omits the optional --tier
and --key-id parameters, Parameter Store creates a standard secure string parameter and encrypts it
under the AWS managed CMK.

aws ssm put-parameter --name MyParameter --value "secret_value" --type SecureString

The following similar example uses the --key-id parameter to specify a customer managed CMK (p. 3).
The example uses a CMK ID to identify the CMK, but you can use any valid CMK identifier. Because
the command omits the Tier parameter (--tier), Parameter Store creates a standard secure string
parameter, not an advanced one.

aws ssm put-parameter --name param1 --value "secret" --type SecureString --key-id
 1234abcd-12ab-34cd-56ef-1234567890ab

When you get a secure string parameter from Parameter Store, its value is encrypted. To get a
parameter, use the GetParameter operation in the Systems Manager API.

The following example uses the Systems Manager get-parameter command in the AWS CLI to get the
MyParameter parameter from Parameter Store without decrypting its value.

$ aws ssm get-parameter --name MyParameter

{
 "Parameter": {
 "Type": "SecureString",
 "Name": "MyParameter",
 "Value":
 "AQECAHgnOkMROh5LaLXkA4j0+vYi6tmM17Lg/9E464VRo68cvwAAAG8wbQYJKoZIhvcNAQcGoGAwXgIBADBZBgkqhkiG9w0BBwEwHgYJYZZIAWUDBAEuMBEEDImYOw44gna0Jm00hAIBEIAsjgr7mum1EnnXzE3xM8bGle0oKYcfVCHtBkfjIeZGTgL6Hg0fSDnpMHdcSXY="
 }
}

To decrypt the parameter value before returning it, set the WithDecryption parameter of
GetParameter to true. When you use WithDecryption, Parameter Store calls the AWS KMS Decrypt
operation on your behalf to decrypt the parameter value. As a result, the GetParameter request returns
the parameter with a plaintext parameter value, as shown in the following example.

$ aws ssm get-parameter --name MyParameter --with-decryption

{
 "Parameter": {
 "Type": "SecureString",
 "Name": "MyParameter",
 "Value": "secret_value"

268

https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html
https://docs.aws.amazon.com/systems-manager/latest/APIReference/API_PutParameter.html
https://docs.aws.amazon.com/cli/latest/reference/ssm/put-parameter.html
https://docs.aws.amazon.com/systems-manager/latest/APIReference/API_GetParameter.html
https://docs.aws.amazon.com/cli/latest/reference/ssm/get-parameter.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html

AWS Key Management Service Developer Guide
Protecting Advanced Secure String Parameters

 }
}

The following workflow shows how Parameter Store uses an AWS KMS CMK to encrypt and decrypt a
standard secure string parameter.

Encrypt a Standard Parameter
1. When you use PutParameter to create a secure string parameter, Parameter Store sends an Encrypt

request to AWS KMS. That request includes the plaintext parameter value, the CMK that you chose,
and the Parameter Store encryption context (p. 274). During transmission to AWS KMS, the plaintext
value in the secure string parameter is protected by Transport Layer Security (TLS).

2. AWS KMS encrypts the parameter value with the specified CMK and encryption context. It returns the
ciphertext to Parameter Store, which stores the parameter name and its encrypted value.

Decrypt a Standard Parameters
1. When you include the WithDecryption parameter in a GetParameter request, Parameter Store

sends a Decrypt request to AWS KMS with the encrypted secure string parameter value and the
Parameter Store encryption context (p. 274).

2. AWS KMS uses the same CMK and the supplied encryption context to decrypt the encrypted value.
It returns the plaintext (decrypted) parameter value to Parameter Store. During transmission, the
plaintext data is protected by TLS.

3. Parameter Store returns the plaintext parameter value to you in the GetParameter response.

Protecting Advanced Secure String Parameters
When you use PutParameter to create an advanced secure string parameter, Parameter Store uses
envelope encryption with the AWS Encryption SDK and a symmetric AWS KMS customer master key

269

https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/how-it-works.html#envelope-encryption

AWS Key Management Service Developer Guide
Protecting Advanced Secure String Parameters

(CMK) to protect the parameter value. Each advanced parameter value is encrypted under a unique data
key, and the data key is encrypted under an AWS KMS CMK. You can use the AWS managed CMK (p. 4) for
the account (aws/ssm) or any customer managed CMK.

The AWS Encryption SDK is an open-source, client-side library that helps you to encrypt and decrypt
data using industry standards and best practices. It's supported on multiple platforms and in multiple
programming languages, including a command-line interface. You can view the source code and
contribute to its development in GitHub.

For each secure string parameter value, Parameter Store calls the AWS Encryption SDK to encrypt
the parameter value using a unique data key that AWS KMS generates (GenerateDataKey). The AWS
Encryption SDK returns to Parameter Store an encrypted message that includes the encrypted parameter
value and an encrypted copy of the unique data key. Parameter Store stores the entire encrypted
message in the secure string parameter value. Then, when you get an advanced secure string parameter
value, Parameter Store uses the AWS Encryption SDK to decrypt the parameter value. This requires a call
to AWS KMS to decrypt the encrypted data key.

To create an advanced secure string parameter, use the PutParameter operation in the Systems
Manager API. Set the value of Tier parameter to Advanced. Include a Type parameter with a value
of SecureString. To specify an AWS KMS CMK, use the KeyId parameter. The default is the AWS
managed CMK for your account, aws/ssm.

aws ssm put-parameter --name MyParameter --value "secret_value" --type SecureString --tier
 Advanced

The following similar example uses the --key-id parameter to specify a customer managed CMK (p. 3).
The example uses the Amazon Resource Name (ARN) of the CMK, but you can use any valid CMK
identifier.

aws ssm put-parameter --name MyParameter --value "secret_value"
 --type SecureString --tier Advanced --key-id arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

When you get a secure string parameter from Parameter Store, its value is the encrypted message that
the AWS Encryption SDK returned. To get a parameter, use the GetParameter operation in the Systems
Manager API.

The following example uses the Systems Manager GetParameter operation to get the MyParameter
parameter from Parameter Store without decrypting its value.

$ aws ssm get-parameter --name MyParameter

{
 "Parameter": {
 "Type": "SecureString",
 "Name": "MyParameter",
 "Value":
 "AQECAHgnOkMROh5LaLXkA4j0+vYi6tmM17Lg/9E464VRo68cvwAAAG8wbQYJKoZIhvcNAQcGoGAwXgIBADBZBgkqhkiG9w0BBwEwHgYJYZZIAWUDBAEuMBEEDImYOw44gna0Jm00hAIBEIAsjgr7mum1EnnXzE3xM8bGle0oKYcfVCHtBkfjIeZGTgL6Hg0fSDnpMHdcSXY="
 }
}

To decrypt the parameter value before returning it, set the WithDecryption parameter of
GetParameter to true. When you use WithDecryption, Parameter Store calls the AWS KMS Decrypt
operation on your behalf to decrypt the parameter value. As a result, the GetParameter request returns
the parameter with a plaintext parameter value, as shown in the following example.

$ aws ssm get-parameter --name MyParameter --with-decryption

270

https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/concepts.html#message
https://docs.aws.amazon.com/systems-manager/latest/APIReference/API_PutParameter.html
https://docs.aws.amazon.com/systems-manager/latest/APIReference/API_GetParameter.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html

AWS Key Management Service Developer Guide
Protecting Advanced Secure String Parameters

{
 "Parameter": {
 "Type": "SecureString",
 "Name": "MyParameter",
 "Value": "secret_value"
 }
}

You cannot convert an advanced secure string parameter to a standard one, but you can convert
a standard secure string to an advanced one. To convert a standard secure string parameter to an
advanced secure string, use the PutParameter operation with the Overwrite parameter. The Type
must be SecureString and the Tier value must be Advanced. The KeyId parameter, which identifies
a customer managed CMK, is optional. If you omit it, Parameter Store uses the AWS managed CMK
for the account. You can specify any CMK that the principal has permission to use, even if you used a
different CMK to encrypt the standard parameter.

When you use the Overwrite parameter, Parameter Store uses the AWS Encryption SDK to encrypt the
parameter value. Then it stores the newly encrypted message in Parameter Store.

$ aws ssm put-parameter --name myStdParameter --value "secret_value" --type SecureString
 --tier Advanced --key-id 1234abcd-12ab-34cd-56ef-1234567890ab --overwrite

The following workflow shows how Parameter Store uses an AWS KMS CMK to encrypt and decrypt an
advanced secure string parameter.

Encrypt an Advanced Parameter
1. When you use PutParameter to create an advanced secure string parameter, Parameter Store

uses the AWS Encryption SDK and AWS KMS to encrypt the parameter value. Parameter Store calls
the AWS Encryption SDK with the parameter value, the AWS KMS CMK that you specified, and the
Parameter Store encryption context (p. 274).

2. The AWS Encryption SDK sends a GenerateDataKey request to AWS KMS with the identifier of the CMK
that you specified and the Parameter Store encryption context. AWS KMS returns two copies of the
unique data key: one in plaintext and one encrypted under the CMK. (The encryption context is used
when encrypting the data key.)

3. The AWS Encryption SDK uses the plaintext data key to encrypt the parameter value. It returns an
encrypted message that includes the encrypted parameter value, the encrypted data key, and other
data, including the Parameter Store encryption context.

4. Parameter Store stores the encrypted message as the parameter value.

271

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/concepts.html#message

AWS Key Management Service Developer Guide
Setting Permissions to Encrypt
and Decrypt Parameter Values

Decrypt an Advanced Parameter
1. You can include the WithDecryption parameter in a GetParameter request to get an advanced

secure string parameter. When you do, Parameter Store passes the encrypted message from the
parameter value to a decryption method of the AWS Encryption SDK.

2. The AWS Encryption SDK calls the KMS Decrypt operation. It passes in the encrypted data key and the
Parameter Store encryption context from the encrypted message.

3. AWS KMS uses the CMK and the Parameter Store encryption context to decrypt the encrypted data
key. Then it returns the plaintext (decrypted) data key to the AWS Encryption SDK.

4. The AWS Encryption SDK uses the plaintext data key to decrypt the parameter value. It returns the
plaintext parameter value to Parameter Store.

5. Parameter Store verifies the encryption context and returns the plaintext parameter value to you in
the GetParameter response.

Setting Permissions to Encrypt and Decrypt
Parameter Values
To encrypt a standard secure string parameter value, the user needs kms:Encrypt permission. To
encrypt an advanced secure string parameter value, the user needs kms:GenerateDataKey permission.
To decrypt either type of secure string parameter value, the user needs kms:Decrypt permission.

You can use IAM policies to allow or deny permission for a user to call the Systems Manager
PutParameter and GetParameter operations.

If you are using customer managed CMKs to encrypt your secure string parameter values, you can use
IAM policies and key policies to manage encrypt and decrypt permissions. However, you cannot establish
access control policies for the default aws/ssm CMK. For detailed information about controlling access to
customer managed CMKs, see Authentication and Access Control for AWS KMS (p. 46).

272

https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/concepts.html#message
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html

AWS Key Management Service Developer Guide
Setting Permissions to Encrypt
and Decrypt Parameter Values

The following example shows an IAM policy designed for standard secure string parameters. It
allows the user to call the Systems Manager PutParameter operation on all parameters in the
FinancialParameters path. The policy also allows the user to call the AWS KMS Encrypt operation
on an example customer managed CMK.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ssm:PutParameter"
],
 "Resource": "arn:aws:ssm:us-west-2:111122223333:parameter/FinancialParameters/
*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "kms:Encrypt"
],
 "Resource": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }
]
}

The next example shows an IAM policy that is designed for advanced secure string parameters. It
allows the user to call the Systems Manager PutParameter operation on all parameters in the
ReservedParameters path. The policy also allows the user to call the AWS KMS GenerateDataKey
operation on an example customer managed CMK.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ssm:PutParameter"
],
 "Resource": "arn:aws:ssm:us-west-2:111122223333:parameter/ReservedParameters/*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "kms:GenerateDataKey"
],
 "Resource": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }
]
}

The final example also shows an IAM policy that can be used for standard or advanced secure string
parameters. It allows the user to call the Systems Manager GetParameter operations (and related
operations) on all parameters in the ITParameters path. The policy also allows the user to call the AWS
KMS Decrypt operation on an example customer managed CMK.

{
 "Version": "2012-10-17",
 "Statement": [

273

AWS Key Management Service Developer Guide
Parameter Store Encryption Context

 {
 "Effect": "Allow",
 "Action": [
 "ssm:GetParameter*"
],
 "Resource": "arn:aws:ssm:us-west-2:111122223333:parameter/ITParameters/*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt"
],
 "Resource": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }
]
}

Parameter Store Encryption Context
An encryption context is a set of key–value pairs that contain arbitrary nonsecret data. When you include
an encryption context in a request to encrypt data, AWS KMS cryptographically binds the encryption
context to the encrypted data. To decrypt the data, you must pass in the same encryption context.

You can also use the encryption context to identify a cryptographic operation in audit records and logs.
The encryption context appears in plaintext in logs, such as AWS CloudTrail logs.

The AWS Encryption SDK also takes an encryption context, although it handles it differently.
Parameter Store supplies the encryption context to the encryption method. The AWS Encryption SDK
cryptographically binds the encryption context to the encrypted data. It also includes the encryption
context in plain text in the header of the encrypted message that it returns. However, unlike AWS KMS,
the AWS Encryption SDK decryption methods do not take an encryption context as input. Instead, when
it decrypts data, the AWS Encryption SDK gets the encryption context from the encrypted message.
Parameter Store verifies that the encryption context includes the value that it expects before returning
the plaintext parameter value to you.

Parameter Store uses the following encryption context in its cryptographic operations:

• Key: PARAMETER_ARN
• Value: The Amazon Resource Name (ARN) of the parameter that is being encrypted.

The format of the encryption context is as follows:

"PARAMETER_ARN":"arn:aws:ssm:<REGION_NAME>:<ACCOUNT_ID>:parameter/<parameter-name>"

For example, Parameter Store includes this encryption context in calls to encrypt and decrypt the
MyParameter parameter in an example AWS account and region.

"PARAMETER_ARN":"arn:aws:ssm:us-west-2:111122223333:parameter/MyParameter"

If the parameter is in a Parameter Store hierarchical path, the path and name are included in the
encryption context. For example, this encryption context is used when encrypting and decrypting the
MyParameter parameter in the /ReadableParameters path in an example AWS account and region.

"PARAMETER_ARN":"arn:aws:ssm:us-west-2:111122223333:parameter/ReadableParameters/
MyParameter"

274

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html

AWS Key Management Service Developer Guide
Troubleshooting CMK Issues in Parameter Store

You can decrypt an encrypted secure string parameter value by calling the AWS KMS Decrypt operation
with the correct encryption context and the encrypted parameter value that the Systems Manager
GetParameter operation returns. However, we encourage you to decrypt Parameter Store parameter
values by using the GetParameter operation with the WithDecryption parameter.

You can also include the encryption context in an IAM policy. For example, you can permit a user to
decrypt only one particular parameter value or set of parameter values.

The following example IAM policy statement allows the user to the get value of the MyParameter
parameter and to decrypt its value using the specified CMK. However the permissions apply only when
the encryption context matches specified string. These permissions do not apply to any other parameter
or CMK, and the call to GetParameter fails if the encryption context does not match the string.

Before using a policy statement like this one, replace the example ARNs with valid values.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ssm:GetParameter*"
],
 "Resource": "arn:aws:ssm:us-west-2:111122223333:parameter/MyParameter",
 },
 {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt"
],
 "Resource": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "Condition": {
 "StringEquals": {
 "kms:EncryptionContext:PARAMETER_ARN":"arn:aws:ssm:us-
west-2:111122223333:parameter/MyParameter"
 }
 }
 }
]
}

Troubleshooting CMK Issues in Parameter Store
To perform any operation on a secure string parameter, Parameter Store must be able to use the AWS
KMS CMK that you specify for your intended operation. Most of the Parameter Store failures related to
CMKs are caused by the following problems:

• The credentials that an application is using do not have permission to perform the specified action on
the CMK.

To fix this error, run the application with different credentials or revise the IAM or key policy that is
preventing the operation. For help with AWS KMS IAM and key policies, see Authentication and Access
Control for AWS KMS (p. 46).

• The CMK is not found.

This typically happens when you use an incorrect identifier for the CMK. Find the correct
identifiers (p. 32) for the CMK and try the command again.

• The CMK is not enabled. When this occurs, Parameter Store returns an InvalidKeyId exception with a
detailed error message from AWS KMS. If the CMK state is Disabled, enable it (p. 41). If it is Pending

275

AWS Key Management Service Developer Guide
Amazon WorkMail

Import, complete the import procedure (p. 147). If the key state is Pending Deletion, cancel the
key deletion (p. 162) or use a different CMK.

To find the key state (p. 223) of a CMK in the AWS KMS console, on the Customer managed keys or
AWS managed keys page, see the Status column (p. 23). To use the AWS KMS API to find the status of
a CMK, use the DescribeKey operation.

How Amazon WorkMail Uses AWS KMS
This topic discusses how Amazon WorkMail uses AWS KMS to encrypt email messages.

Topics

• Amazon WorkMail Overview (p. 276)

• Amazon WorkMail Encryption (p. 276)

• Authorizing Use of the CMK (p. 279)

• Amazon WorkMail Encryption Context (p. 280)

• Monitoring Amazon WorkMail Interaction with AWS KMS (p. 281)

Amazon WorkMail Overview
Amazon WorkMail is a secure, managed business email and calendaring service with support for existing
desktop and mobile email clients. You can create an Amazon WorkMail organization and assign to it one
or more email domains that you own. Then you can create mailboxes for the email users and distribution
groups in the organization.

Amazon WorkMail transparently encrypts all messages in the mailboxes of all Amazon WorkMail
organizations before the messages are written to disk and transparently decrypts the messages when
users access them. There is no option to disable encryption. To protect the encryption keys that protect
the messages, Amazon WorkMail is integrated with AWS Key Management Service (AWS KMS).

Amazon WorkMail also provides an option for enabling users to send signed or encrypted email. This
encryption feature does not use AWS KMS.

Amazon WorkMail Encryption
In Amazon WorkMail, each organization can contain multiple mailboxes, one for each user in the
organization. All messages, including email and calendar items, are stored in the user's mailbox.

To protect the contents of the mailboxes in your Amazon WorkMail organizations, Amazon WorkMail
encrypts all mailbox messages before they are written to disk. No customer-provided information is
stored in plaintext.

Each message is encrypted under a unique data encryption key. The message key is protected by a
mailbox key, which is a unique encryption key that is used only for that mailbox. The mailbox key is
encrypted under an AWS KMS customer master key (CMK) for the organization that never leaves AWS
KMS unencrypted. The following diagram shows the relationship of the encrypted messages, encrypted
message keys, encrypted mailbox key, and the CMK for the organization in AWS KMS.

276

https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html
https://docs.aws.amazon.com/workmail/latest/adminguide/
https://docs.aws.amazon.com/workmail/latest/adminguide/enable_encryption.html

AWS Key Management Service Developer Guide
Amazon WorkMail Encryption

A CMK for the Organization
When you create an Amazon WorkMail organization, you can select an AWS KMS customer master key
(CMK) for the organization. This CMK protects all mailbox keys in that organization.

If you use the Quick Setup procedure to create your organization, Amazon WorkMail uses the AWS
managed CMK (p. 2) for Amazon WorkMail (aws/workmail) in your AWS account. If you use the
Standard Setup, you can select the AWS managed CMK for Amazon WorkMail or a customer managed
CMK (p. 2) that you own and manage. You can select the same CMK or a different CMK for each of your
organizations, but you cannot change the CMK once you have selected it.

Important
Amazon WorkMail supports only symmetric CMKs. You cannot use an asymmetric CMK to
encrypt data in Amazon WorkMail. To determine whether a CMK is symmetric or asymmetric,
see Identifying Symmetric and Asymmetric CMKs (p. 33).

To find the CMK for your organization, use the AWS CloudTrail log entry that records calls to AWS KMS.

A Unique Encryption Key for Each Mailbox
When you create a new mailbox, Amazon WorkMail generates a unique 256-bit Advanced Encryption
Standard (AES) symmetric encryption key for the mailbox, known as its mailbox key, outside of AWS KMS.
Amazon WorkMail uses the mailbox key to protect the encryption keys for each message in the mailbox.

277

https://docs.aws.amazon.com/workmail/latest/adminguide/add_new_organization.html#quick_setup
https://docs.aws.amazon.com/workmail/latest/adminguide/add_new_organization.html#premises_directory
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

AWS Key Management Service Developer Guide
Amazon WorkMail Encryption

To protect the mailbox key, Amazon WorkMail calls AWS KMS to encrypt the mailbox key under the CMK
for the organization. Then it stores the encrypted mailbox key in the mailbox metadata.

Note
Amazon WorkMail uses a symmetric mailbox encryption key to protect message keys. Previously,
Amazon WorkMail protected each mailbox with an asymmetric key pair. It used the public key
to encrypt each message key and the private key to decrypt it. The private mailbox key was
protected by the CMK for the organization. Existing mailboxes might still use an asymmetric
mailbox key pair. This change does not affect the security of the mailbox or its messages.

A Unique Encryption Key for Each Message
When a message is added to the mailbox, Amazon WorkMail generates a unique 256-bit AES symmetric
encryption key for the message outside of AWS KMS. It uses this message key to encrypt the message.
Amazon WorkMail encrypts the message key under the mailbox key and stores the encrypted message
key with the message. Then, it encrypts the mailbox key under the CMK for the organization.

Creating a New Mailbox
When Amazon WorkMail creates a new mailbox, it uses the following process to prepare the mailbox to
hold encrypted messages.

• Amazon WorkMail generates a unique 256-bit AES symmetric encryption key for the mailbox outside
of AWS KMS.

• Amazon WorkMail calls the AWS KMS Encrypt operation. It passes in the mailbox key and the identifier
of the customer master key (CMK) for the organization. AWS KMS returns a ciphertext of the mailbox
key encrypted under the CMK.

• Amazon WorkMail stores the encrypted mailbox key with the mailbox metadata.

Encrypting a Mailbox Message
To encrypt a message, Amazon WorkMail uses the following process.

1. Amazon WorkMail generates a unique 256-bit AES symmetric key for the message. It uses the
plaintext message key and the Advanced Encryption Standard (AES) algorithm to encrypt the message
outside of AWS KMS.

2. To protect the message key under the mailbox key, Amazon WorkMail needs to decrypt the mailbox
key, which is always stored in its encrypted form.

Amazon WorkMail calls the AWS KMS Decrypt operation and passes in the encrypted mailbox key.
AWS KMS uses the CMK for the organization to decrypt the mailbox key and it returns the plaintext
mailbox key to Amazon WorkMail.

3. Amazon WorkMail uses the plaintext mailbox key and the Advanced Encryption Standard (AES)
algorithm to encrypt the message key outside of AWS KMS.

4. Amazon WorkMail stores the encrypted message key in the metadata of the encrypted message so it
is available to decrypt it.

Decrypting a Mailbox Message
To decrypt a message, Amazon WorkMail uses the following process.

1. Amazon WorkMail calls the AWS KMS Decrypt operation and passes in the encrypted mailbox key.
AWS KMS uses the CMK for the organization to decrypt the mailbox key and it returns the plaintext
mailbox key to Amazon WorkMail.

278

https://docs.aws.amazon.com/kms/latest/developerguide/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html

AWS Key Management Service Developer Guide
Authorizing Use of the CMK

2. Amazon WorkMail uses the plaintext mailbox key and the Advanced Encryption Standard (AES)
algorithm to decrypt the encrypted message key outside of AWS KMS.

3. Amazon WorkMail uses the plaintext message key to decrypt the encrypted message.

Caching Mailbox Keys

To improve performance and minimize calls to AWS KMS, Amazon WorkMail caches each plaintext
mailbox key for each client locally for up to one minute. At the end of the caching period, the mailbox
key is removed. If the mailbox key for that client is required during the caching period, Amazon WorkMail
can get it from the cache instead of calling AWS KMS. The mailbox key is protected in the cache and is
never written to disk in plaintext.

Authorizing Use of the CMK
When Amazon WorkMail uses a customer master key (CMK) in cryptographic operations, it acts on behalf
of the mailbox administrator.

To use the AWS KMS customer master key (CMK) for a secret on your behalf, the administrator must have
the following permissions. You can specify these required permissions in an IAM policy or key policy.

• kms:Encrypt

• kms:Decrypt

• kms:CreateGrant

To allow the CMK to be used only for requests that originate in Amazon WorkMail, you can use the
kms:ViaService (p. 111) condition key with the workmail.<region>.amazonaws.com value.

You can also use the keys or values in the encryption context (p. 280) as a condition for using the CMK
for cryptographic operations. For example, you can use a string condition operator in an IAM or key
policy document or use a grant constraint in a grant.

Key Policy for the Organization CMK

The key policy for the AWS managed CMK for Amazon WorkMail gives users permission to use the CMK
for specified operations only when Amazon WorkMail makes the request on the user's behalf. The key
policy does not allow any user to use the CMK directly.

This key policy, like the policies of all AWS managed keys, is established by the service. You cannot
change the key policy, but you can view it at any time. For details, see Viewing a Key Policy (p. 61).

The policy statements in the key policy have the following effect:

• Allow users in the account and Region to use the CMK for cryptographic operations and to
create grants, but only when the request comes from Amazon WorkMail on their behalf. The
kms:ViaService condition key enforces this restriction.

• Allows the AWS account to create IAM policies that allow users to view CMK properties and revoke
grants.

The following is a key policy for an example AWS managed CMK for Amazon WorkMail.

{
 "Version" : "2012-10-17",
 "Id" : "auto-workmail-1",

279

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys

AWS Key Management Service Developer Guide
Amazon WorkMail Encryption Context

 "Statement" : [{
 "Sid" : "Allow access through WorkMail for all principals in the account that are
 authorized to use WorkMail",
 "Effect" : "Allow",
 "Principal" : {
 "AWS" : "*"
 },
 "Action" : ["kms:Decrypt", "kms:CreateGrant", "kms:ReEncrypt*", "kms:DescribeKey",
 "kms:Encrypt"],
 "Resource" : "*",
 "Condition" : {
 "StringEquals" : {
 "kms:ViaService" : "workmail.us-east-1.amazonaws.com",
 "kms:CallerAccount" : "111122223333"
 }
 }
 }, {
 "Sid" : "Allow direct access to key metadata to the account",
 "Effect" : "Allow",
 "Principal" : {
 "AWS" : "arn:aws:iam::111122223333:root"
 },
 "Action" : ["kms:Describe*", "kms:List*", "kms:Get*", "kms:RevokeGrant"],
 "Resource" : "*"
 }]
}

Using Grants to Authorize Amazon WorkMail

In addition to key policies, Amazon WorkMail uses grants to add permissions to the CMK for each
organization. To view the grants on the CMK in your account, use the ListGrants operation.

Amazon WorkMail uses grants to add the following permissions to the CMK for the organization.

• Add the kms:Encrypt permission to allow Amazon WorkMail to encrypt the mailbox key.

• Add the kms:Decrypt permission to allow Amazon WorkMail to use the CMK to decrypt the mailbox
key. Amazon WorkMail requires this permission in a grant because the request to read mailbox
messages uses the security context of the user who is reading the message. The request does not use
the credentials of the AWS account. Amazon WorkMail creates this grant when you select a CMK for
the organization.

To create the grants, Amazon WorkMail calls CreateGrant on behalf of the user who created the
organization. Permission to create the grant comes from the key policy. This policy allows account users
to call CreateGrant on the CMK for the organization when Amazon WorkMail makes the request on an
authorized user's behalf.

The key policy also allows the account root to revoke the grant on the AWS managed key. However, if
you revoke the grant, Amazon WorkMail cannot decrypt the encrypted data in your mailboxes.

Amazon WorkMail Encryption Context
An encryption context (p. 12) is a set of key-value pairs that contain arbitrary nonsecret data. When
you include an encryption context in a request to encrypt data, AWS KMS cryptographically binds the
encryption context to the encrypted data. To decrypt the data, you must pass in the same encryption
context.

Amazon WorkMail uses the same encryption context format in all AWS KMS cryptographic operations.
You can use the encryption context to identify a cryptographic operation in audit records and logs, such
as AWS CloudTrail, and as a condition for authorization in policies and grants.

280

https://docs.aws.amazon.com/kms/latest/APIReference/API_ListGrants.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateGrant.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html

AWS Key Management Service Developer Guide
Monitoring Amazon WorkMail Interaction with AWS KMS

In its Encrypt and Decrypt requests to AWS KMS, Amazon WorkMail uses an encryption context where
the key is aws:workmail:arn and the value is the Amazon Resource Name (ARN) of the organization.

"aws:workmail:arn":"arn:aws:workmail:region:account ID:organization/organization ID"

For example, the following encryption context includes an example organization ARN in the US East
(Ohio) (us-east-2) Region.

"aws:workmail:arn":"arn:aws:workmail:us-east-2:111122223333:organization/
m-68755160c4cb4e29a2b2f8fb58f359d7"

Monitoring Amazon WorkMail Interaction with AWS
KMS
You can use AWS CloudTrail and Amazon CloudWatch Logs to track the requests that Amazon WorkMail
sends to AWS KMS on your behalf.

Encrypt
When you create a new mailbox, Amazon WorkMail generates a mailbox key and calls AWS KMS to
encrypt the mailbox key. Amazon WorkMail sends an Encrypt request to AWS KMS with the plaintext
mailbox key and an identifier for the CMK of the Amazon WorkMail organization.

The event that records the Encrypt operation is similar to the following example event. The user is the
Amazon WorkMail service. The parameters include the CMK ID (keyId) and the encryption context for
the Amazon WorkMail organization. Amazon WorkMail also passes in the mailbox key, but that is not
recorded in the CloudTrail log.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "AWSService",
 "invokedBy": "workmail.eu-west-1.amazonaws.com"
 },
 "eventTime": "2019-02-19T10:01:09Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "Encrypt",
 "awsRegion": "eu-west-1",
 "sourceIPAddress": "workmail.eu-west-1.amazonaws.com",
 "userAgent": "workmail.eu-west-1.amazonaws.com",
 "requestParameters": {
 "encryptionContext": {
 "aws:workmail:arn": "arn:aws:workmail:eu-west-1:111122223333:organization/m-
c6981ff7642446fa8772ba99c690e455"
 },
 "keyId": "arn:aws:kms:eu-
west-1:111122223333:key/1a2b3c4d-5e6f-1a2b-3c4d-5e6f1a2b3c4d"
 },
 "responseElements": null,
 "requestID": "76e96b96-7e24-4faf-a2d6-08ded2eaf63c",
 "eventID": "d5a59c18-128a-4082-aa5b-729f7734626a",
 "readOnly": true,
 "resources": [
 {
 "ARN": "arn:aws:kms:eu-
west-1:111122223333:key/1a2b3c4d-5e6f-1a2b-3c4d-5e6f1a2b3c4d",
 "accountId": "111122223333",
 "type": "AWS::KMS::Key"

281

https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html

AWS Key Management Service Developer Guide
Amazon WorkSpaces

 }
],
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333",
 "sharedEventID": "d08e60f1-097e-4a00-b7e9-10bc3872d50c"
}

Decrypt
When you add, view, or delete a mailbox message, Amazon WorkMail asks AWS KMS to decrypt the
mailbox key. Amazon WorkMail sends an Decrypt request to AWS KMS with the encrypted mailbox key
and an identifier for the CMK of the Amazon WorkMail organization.

The event that records the Decrypt operation is similar to the following example event. The user is the
Amazon WorkMail service. The parameters include the encrypted mailbox key (as a ciphertext blob),
which is not recorded in the log, and the encryption context for the Amazon WorkMail organization. AWS
KMS derives the ID of the CMK from the ciphertext.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "AWSService",
 "invokedBy": "workmail.eu-west-1.amazonaws.com"
 },
 "eventTime": "2019-02-20T11:51:10Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "Decrypt",
 "awsRegion": "eu-west-1",
 "sourceIPAddress": "workmail.eu-west-1.amazonaws.com",
 "userAgent": "workmail.eu-west-1.amazonaws.com",
 "requestParameters": {
 "encryptionContext": {
 "aws:workmail:arn": "arn:aws:workmail:eu-west-1:111122223333:organization/m-
c6981ff7642446fa8772ba99c690e455"
 }
 },
 "responseElements": null,
 "requestID": "4a32dda1-34d9-4100-9718-674b8e0782c9",
 "eventID": "ea9fd966-98e9-4b7b-b377-6e5a397a71de",
 "readOnly": true,
 "resources": [
 {
 "ARN": "arn:aws:kms:eu-
west-1:111122223333:key/1a2b3c4d-5e6f-1a2b-3c4d-5e6f1a2b3c4d",
 "accountId": "111122223333",
 "type": "AWS::KMS::Key"
 }
],
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333",
 "sharedEventID": "241e1e5b-ff64-427a-a5b3-7949164d0214"
}

How Amazon WorkSpaces Uses AWS KMS
You can use Amazon WorkSpaces to provision a cloud-based desktop (a WorkSpace) for each of your
end users. When you launch a new WorkSpace, you can choose to encrypt its volumes and decide which
AWS KMS customer master key (p. 2) (CMK) to use for the encryption. You can choose the AWS managed
CMK (p. 4) for Amazon WorkSpaces (aws/workspaces) or a symmetric customer managed CMK (p. 3).

282

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://aws.amazon.com/workspaces/

AWS Key Management Service Developer Guide
Overview of Amazon WorkSpaces

Encryption Using AWS KMS

Important
Amazon WorkSpaces supports only symmetric CMKs. You cannot use an asymmetric CMK to
encrypt the volumes in an Amazon WorkSpaces. To determine whether a CMK is symmetric or
asymmetric, see Identifying Symmetric and Asymmetric CMKs (p. 33).

For more information about creating WorkSpaces with encrypted volumes, go to Encrypt a WorkSpace in
the Amazon WorkSpaces Administration Guide.

Topics
• Overview of Amazon WorkSpaces Encryption Using AWS KMS (p. 283)

• Amazon WorkSpaces Encryption Context (p. 284)

• Giving Amazon WorkSpaces Permission to Use A CMK On Your Behalf (p. 284)

Overview of Amazon WorkSpaces Encryption Using
AWS KMS
When you create WorkSpaces with encrypted volumes, Amazon WorkSpaces uses Amazon Elastic Block
Store (Amazon EBS) to create and manage those volumes. Both services use your KMS customer master
key (CMK) to work with the encrypted volumes. For more information about EBS volume encryption, see
the following documentation:

• How Amazon Elastic Block Store (Amazon EBS) Uses AWS KMS (p. 243) in this guide

• Amazon EBS Encryption in the Amazon EC2 User Guide for Windows Instances

When you launch WorkSpaces with encrypted volumes, the end-to-end process works like this:

1. You specify the CMK to use for encryption as well as the WorkSpace's user and directory. This action
creates a grant (p. 115) that allows Amazon WorkSpaces to use your CMK only for this WorkSpace—
that is, only for the WorkSpace associated with the specified user and directory.

2. Amazon WorkSpaces creates an encrypted EBS volume for the WorkSpace and specifies the CMK
to use as well as the volume's user and directory (the same information that you specified at Step
1 (p. 283)). This action creates a grant (p. 115) that allows Amazon EBS to use your CMK only for
this WorkSpace and volume—that is, only for the WorkSpace associated with the specified user and
directory, and only for the specified volume.

3. Amazon EBS requests a volume data key that is encrypted under your CMK and specifies the
WorkSpace user's Sid and directory ID as well as the volume ID as encryption context.

4. AWS KMS creates a new data key, encrypts it under your CMK, and then sends the encrypted data
key to Amazon EBS.

5. Amazon WorkSpaces uses Amazon EBS to attach the encrypted volume to your WorkSpace. Amazon
EBS sends the encrypted data key to AWS KMS with a Decrypt request and specifies the WorkSpace
user's Sid, its directory ID, and the the volume ID, which is used as the encryption context (p. 284).

6. AWS KMS uses your CMK to decrypt the data key, and then sends the plaintext data key to Amazon
EBS.

7. Amazon EBS uses the plaintext data key to encrypt all data going to and from the encrypted
volume. Amazon EBS keeps the plaintext data key in memory for as long as the volume is attached
to the WorkSpace.

8. Amazon EBS stores the encrypted data key (received at Step 4 (p. 283)) with the volume metadata
for future use in case you reboot or rebuild the WorkSpace.

9. When you use the AWS Management Console to remove a WorkSpace (or use the
TerminateWorkspaces action in the Amazon WorkSpaces API), Amazon WorkSpaces and Amazon
EBS retire the grants that allowed them to use your CMK for that WorkSpace.

283

https://docs.aws.amazon.com/workspaces/latest/adminguide/wsp_encrypt_workspace.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/workspaces/latest/devguide/API_TerminateWorkspaces.html

AWS Key Management Service Developer Guide
Amazon WorkSpaces Encryption Context

Amazon WorkSpaces Encryption Context
Amazon WorkSpaces doesn't use your customer master key (CMK) directly for cryptographic operations
(such as Encrypt, Decrypt, GenerateDataKey, etc.), which means Amazon WorkSpaces doesn't
send requests to AWS KMS that include an encryption context (p. 12). However, when Amazon EBS
requests an encrypted data key for the encrypted volumes of your WorkSpaces (Step 3 (p. 283) in the
Overview of Amazon WorkSpaces Encryption Using AWS KMS (p. 283)) and when it requests a plaintext
copy of that data key (Step 5 (p. 283)), it includes encryption context in the request. The encryption
context provides additional authenticated data (AAD) that AWS KMS uses to ensure data integrity. The
encryption context is also written to your AWS CloudTrail log files, which can help you understand why a
given customer master key (CMK) was used. Amazon EBS uses the following for the encryption context:

• The sid of the AWS Directory Service user that is associated with the WorkSpace
• The directory ID of the AWS Directory Service directory that is associated with the WorkSpace
• The volume ID of the encrypted volume

The following example shows a JSON representation of the encryption context that Amazon EBS uses:

{
 "aws:workspaces:sid-directoryid":
 "[S-1-5-21-277731876-1789304096-451871588-1107]@[d-1234abcd01]",
 "aws:ebs:id": "vol-1234abcd"
}

Giving Amazon WorkSpaces Permission to Use A CMK
On Your Behalf
You can protect your workspace data under the AWS managed CMK for Amazon WorkSpaces (aws/
workspaces) or a customer managed CMK. If you use a customer managed CMK, you need to give
Amazon WorkSpaces permission to use the CMK on behalf of the Amazon WorkSpaces administrators in
your account. The AWS managed CMK for Amazon WorkSpaces has the required permissions by default.

To prepare your customer managed CMK for use with Amazon WorkSpaces, use the following procedure.

1. Add the WorkSpaces administrators to the list of key users in the CMK's key policy (p. 284)
2. Give the WorkSpaces administrators additional permissions with an IAM policy (p. 285)

Amazon WorkSpaces administrators also need permission to use Amazon WorkSpaces. For more
information about these permissions, go to Controlling Access to Amazon WorkSpaces Resources in the
Amazon WorkSpaces Administration Guide.

Part 1: Adding WorkSpaces Administrators to a CMK's Key Users
To give Amazon WorkSpaces administrators the permissions that they require, you can use the AWS
Management Console or the AWS KMS API.

To add WorkSpaces administrators as key users for a CMK (Console)

1. Sign in to the AWS Management Console and open the AWS Key Management Service (AWS KMS)
console at https://console.aws.amazon.com/kms.

2. To change the AWS Region, use the Region selector in the upper-right corner of the page.
3. In the navigation pane, choose Customer managed keys.

284

https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/crypto/latest/userguide/cryptography-concepts.html#term-aad
https://docs.aws.amazon.com/workspaces/latest/adminguide/wsp_iam.html
https://console.aws.amazon.com/kms

AWS Key Management Service Developer Guide
Giving Amazon WorkSpaces Permission

to Use A CMK On Your Behalf

4. Choose the key ID or alias of your preferred customer managed CMK.
5. In the Key policy section, under Key users, choose Add.
6. In the list of IAM users and roles, select the users and roles that correspond to your WorkSpaces

administrators, and then choose Attach.

To add WorkSpaces administrators as key users for a CMK (KMS API)

1. Use the GetKeyPolicy operation to get the existing key policy, and then save the policy document to
a file.

2. Open the policy document in your preferred text editor. Add the IAM users and roles that
correspond to your WorkSpaces administrators to the policy statements that give permission to key
users (p. 54). Then save the file.

3. Use the PutKeyPolicy operation to apply the key policy to the CMK.

Part 2: Giving WorkSpaces Administrators Extra Permissions
If you are using a customer managed CMK to protect your Amazon WorkSpaces data, in addition to the
permissions in the key users section of the default key policy (p. 51), WorkSpaces administrators need
permission to create grants (p. 115) on the CMK. Also, if they use the AWS Management Console to
create WorkSpaces with encrypted volumes, WorkSpaces administrators need permission to list aliases
and list keys. For information about creating and editing IAM user policies, see Managed Policies and
Inline Policies in the IAM User Guide.

To give these permissions to your WorkSpaces administrators, use an IAM policy.
Add an policy statement similar to the following example to the IAM policy for each
WorkSpaces administrator. Replace the example CMK ARN (arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab) with a valid one. If your
WorkSpaces administrators use only the Amazon WorkSpaces API (not the console), you can omit the
second policy statement with the "kms:ListAliases" and "kms:ListKeys" permissions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "kms:CreateGrant",
 "Resource": "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 },
 {
 "Effect": "Allow",
 "Action": [
 "kms:ListAliases",
 "kms:ListKeys"
],
 "Resource": "*"
 }
]
}

285

https://docs.aws.amazon.com/kms/latest/APIReference/API_GetKeyPolicy.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_PutKeyPolicy.html
https://console.aws.amazon.com/console/home
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html

AWS Key Management Service Developer Guide
Monitoring Tools

Monitoring Customer Master Keys
Monitoring is an important part of understanding the availability, state, and usage of your customer
master keys (CMKs) in AWS KMS and maintaining the reliability, availability, and performance of your
AWS solutions. Collecting monitoring data from all the parts of your AWS solution will help you debug
a multipoint failure if one occurs. Before you start monitoring your CMKs, however, create a monitoring
plan that includes answers to the following questions:

• What are your monitoring goals?
• What resources will you monitor?
• How often will you monitor these resources?
• What monitoring tools (p. 286) will you use?
• Who will perform the monitoring tasks?
• Who should be notified when something happens?

The next step is to monitor your CMKs over time to establish a baseline for normal AWS KMS usage and
expectations in your environment. As you monitor your CMKs, store historical monitoring data so that
you can compare it with current data, identify normal patterns and anomalies, and devise methods to
address issues.

For example, you can monitor AWS KMS API activity and events that affect your CMKs. When data falls
above or below your established norms, you might need to investigate or take corrective action.

To establish a baseline for normal patterns, monitor the following items:

• AWS KMS API activity for data plane operations. These are cryptographic operations that use a CMK,
such as Decrypt, Encrypt, ReEncrypt, and GenerateDataKey.

• AWS KMS API activity for control plane operations that are important to you. These operations
manage a CMK, and you might want to monitor those that change a CMK's availability (such
as ScheduleKeyDeletion, CancelKeyDeletion, DisableKey, EnableKey, ImportKeyMaterial, and
DeleteImportedKeyMaterial) or change a CMK's access control (such as PutKeyPolicy and RevokeGrant).

• Other AWS KMS metrics (such as the amount of time remaining until your imported key
material (p. 147) expires) and events (such as the expiration of imported key material or the deletion
or key rotation of a CMK).

Monitoring Tools
AWS provides various tools that you can use to monitor your CMKs. You can configure some of these
tools to do the monitoring for you, while some of the tools require manual intervention. We recommend
that you automate monitoring tasks as much as possible.

Automated Monitoring Tools
You can use the following automated monitoring tools to watch your CMKs and report when something
has changed.

• Amazon CloudWatch Alarms – Watch a single metric over a time period that you specify, and perform
one or more actions based on the value of the metric relative to a given threshold over a number of
time periods. The action is a notification sent to an Amazon Simple Notification Service (Amazon SNS)
topic or Amazon EC2 Auto Scaling policy. CloudWatch alarms do not invoke actions simply because

286

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ScheduleKeyDeletion.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_CancelKeyDeletion.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DisableKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_EnableKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ImportKeyMaterial.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeleteImportedKeyMaterial.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_PutKeyPolicy.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_RevokeGrant.html

AWS Key Management Service Developer Guide
Manual Tools

they are in a particular state; the state must have changed and been maintained for a specified
number of periods. For more information, see Monitoring with Amazon CloudWatch (p. 287).

• Amazon CloudWatch Events – Match events and route them to one or more target functions or
streams to capture state information and, if necessary, make changes or take corrective action. For
more information, see AWS KMS Events (p. 290) and the Amazon CloudWatch Events User Guide.

• Amazon CloudWatch Logs – Monitor, store, and access your log files from AWS CloudTrail or other
sources. For more information, see the Amazon CloudWatch Logs User Guide.

• AWS CloudTrail Log Monitoring – Share log files between accounts, monitor CloudTrail log files in
real time by sending them to CloudWatch Logs, write log processing applications with the CloudTrail
Processing Library, and validate that your log files have not changed after delivery by CloudTrail. For
more information, see Working with CloudTrail Log Files in the AWS CloudTrail User Guide.

Manual Monitoring Tools
Another important part of monitoring CMKs involves manually monitoring those items that the
CloudWatch alarms and events don't cover. The AWS KMS, CloudWatch, AWS Trusted Advisor, and other
AWS dashboards provide an at-a-glance view of the state of your AWS environment.

You can customize (p. 23) the AWS Managed Keys and Customer Managed Keys pages of the AWS KMS
console to display the following information about each CMK:

• Key ID
• Status
• Creation date
• Expiration date (for CMKs with imported key material (p. 147))
• Origin
• Custom key store ID (for CMKs in custom key stores (p. 172))

The CloudWatch console dashboard shows the following:

• Current alarms and status
• Graphs of alarms and resources
• Service health status

In addition, you can use CloudWatch to do the following:

• Create customized dashboards to monitor the services you care about
• Graph metric data to troubleshoot issues and discover trends
• Search and browse all your AWS resource metrics
• Create and edit alarms to be notified of problems

AWS Trusted Advisor can help you monitor your AWS resources to improve performance, reliability,
security, and cost effectiveness. Four Trusted Advisor checks are available to all users; more than 50
checks are available to users with a Business or Enterprise support plan. For more information, see AWS
Trusted Advisor.

Monitoring with Amazon CloudWatch
You can monitor your customer master keys (CMKs) using Amazon CloudWatch, which collects and
processes raw data from AWS KMS into readable, near real-time metrics. These data are recorded for a

287

https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/use-the-cloudtrail-processing-library.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/use-the-cloudtrail-processing-library.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-working-with-log-files.html
https://console.aws.amazon.com/kms
https://console.aws.amazon.com/kms
https://console.aws.amazon.com/cloudwatch/home
https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/CloudWatch_Dashboards.html
https://aws.amazon.com/premiumsupport/trustedadvisor/
https://aws.amazon.com/premiumsupport/trustedadvisor/

AWS Key Management Service Developer Guide
Metrics and Dimensions

period of two weeks so that you can access historical information and gain a better understanding of the
usage of your CMKs and their changes over time. For more information about Amazon CloudWatch, see
the Amazon CloudWatch User Guide.

Topics

• AWS KMS Metrics and Dimensions (p. 288)

• Creating CloudWatch Alarms to Monitor AWS KMS Metrics (p. 289)

• AWS KMS Events (p. 290)

AWS KMS Metrics and Dimensions
When you import key material into a CMK (p. 147) and set it to expire, AWS KMS sends metrics and
dimensions to CloudWatch. You can view the AWS KMS metrics using the AWS Management Console and
the Amazon CloudWatch API.

AWS KMS Metrics

The AWS/KMS namespace includes the following metrics.

SecondsUntilKeyMaterialExpiration

This metric tracks the number of seconds remaining until imported key material expires. This metric
is valid only for CMKs whose origin is EXTERNAL and whose key material is or was set to expire.
The most useful statistic for this metric is Minimum, which tells you the smallest amount of time
remaining for all data points in the specified statistic period. The only valid unit for this metric is
Seconds.

Use this metric to track the amount of time that remains until your imported key material expires.
When that amount of time falls below a threshold that you define, you might want to take action
such as reimporting the key material with a new expiration date. You can create a CloudWatch alarm
to notify you when that happens. For more information, see Creating CloudWatch Alarms to Monitor
AWS KMS Metrics (p. 289).

Dimensions for AWS KMS Metrics

AWS KMS metrics use the AWS/KMS namespace and have only one valid dimension: KeyId. You can use
this dimension to view metric data for a specific CMK or set of CMKs.

How Do I View AWS KMS Metrics?

You can view the AWS KMS metrics using the AWS Management Console and the Amazon CloudWatch
API.

To view metrics using the CloudWatch console

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. If necessary, change the region. From the navigation bar, select the region where your AWS resources
reside.

3. In the navigation pane, choose Metrics.

4. In the content pane, choose the All metrics tab. Then, below AWS Namespaces, choose KMS.

5. Choose Per-Key Metrics to view the individual metrics and dimensions.

288

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://console.aws.amazon.com/cloudwatch/

AWS Key Management Service Developer Guide
Creating Alarms

To view metrics using the Amazon CloudWatch API

To view AWS KMS metrics using the CloudWatch API, send a ListMetrics request with Namespace set to
AWS/KMS. The following example shows how to do this with the AWS Command Line Interface (AWS CLI).

$ aws cloudwatch list-metrics --namespace AWS/KMS

Creating CloudWatch Alarms to Monitor AWS KMS
Metrics
You can create a CloudWatch alarm that sends an Amazon SNS message when the value of the metric
changes and causes the alarm to change state. An alarm watches a single metric over a time period you
specify, and performs one or more actions based on the value of the metric relative to a given threshold
over a number of time periods. The action is a notification sent to an Amazon SNS topic or Auto Scaling
policy. Alarms invoke actions for sustained state changes only. CloudWatch alarms do not invoke actions
simply because they are in a particular state; the state must have changed and been maintained for a
specified number of periods.

Topics

• Create a CloudWatch Alarm to Monitor the Expiration of Imported Key Material (p. 289)

• Create a CloudWatch Alarm to Monitor Usage of CMKs that are Pending Deletion (p. 290)

Create a CloudWatch Alarm to Monitor the Expiration of
Imported Key Material
When you import key material into a CMK (p. 147), you can optionally specify a time at which the
key material expires. When the key material expires, AWS KMS deletes the key material and the CMK
becomes unusable. To use the CMK again, you must reimport key material. You can create a CloudWatch
alarm to notify you when the amount of time that remains until your imported key material expires
falls below a threshold that you define (for example, 10 days). If you receive a notification from such an
alarm, you might want to take action such as reimporting the key material with a new expiration date.

To create an alarm to monitor the expiration of imported key material (AWS Management
Console)

1. Open the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. If necessary, change the region. From the navigation bar, select the region where your AWS resources
reside.

3. In the navigation pane, choose Alarms. Then choose Create Alarm.

4. Choose Browse Metrics and then choose KMS.

5. Select the check box next to the key ID of the CMK to monitor.

6. In the lower pane, use the menus to change the statistic to Minimum and the time period to 1
Minute. Then choose Next.

7. In the Create Alarm window, do the following:

a. For Name, type a name such as KeyMaterialExpiresSoon.

b. Following Whenever:, for is:, choose <= and then type the number of seconds for your
threshold value. For example, to be notified when the time that remains until your imported key
material expires is 10 days or less, type 864000.

c. For for consecutive period(s), if necessary, type 1.

289

https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_ListMetrics.html
https://aws.amazon.com/cli/
https://console.aws.amazon.com/cloudwatch/

AWS Key Management Service Developer Guide
AWS KMS Events

d. For Send notification to:, do one of the following:

• To use a new Amazon SNS topic, choose New list and then type a new topic name. For Email
list:, type at least one email address. You can type more than one email address by separating
them with commas.

• To use an existing Amazon SNS topic, choose the name of the topic to use.

e. Choose Create Alarm.

8. If you chose to send notifications to an email address, open the email message you receive from no-
reply@sns.amazonaws.com with subject "AWS Notification - Subscription Confirmation." Confirm
your email address by choosing the Confirm subscription link in the email message.

Important
You will not receive email notifications until after you have confirmed your email address.

Create a CloudWatch Alarm to Monitor Usage of CMKs that are
Pending Deletion
When you schedule key deletion (p. 160) for a CMK, AWS KMS enforces a waiting period before deleting
the CMK. You can use the waiting period to ensure that you don't need the CMK now or in the future. You
can also configure a CloudWatch alarm to warn you if a person or application attempts to use the CMK
during the waiting period. If you receive a notification from such an alarm, you might want to cancel
deletion of the CMK.

For more information, see Creating an Amazon CloudWatch Alarm to Detect Usage of a Customer Master
Key that is Pending Deletion (p. 165).

AWS KMS Events
AWS KMS integrates with Amazon CloudWatch Events to notify you of certain events that affect your
CMKs. Each event is represented in JSON (JavaScript Object Notation) and contains the event name, the

290

http://json.org

AWS Key Management Service Developer Guide
AWS KMS Events

date and time when the event occurred, the CMK affected, and more. You can use CloudWatch Events
to collect these events and set up rules that route them to one or more targets such as AWS Lambda
functions, Amazon SNS topics, Amazon SQS queues, streams in Amazon Kinesis Data Streams, or built-in
targets.

For more information about using CloudWatch Events with other kinds of events, including those
emitted by AWS CloudTrail when it records a read/write API request, see the Amazon CloudWatch Events
User Guide.

The following topics describe the CloudWatch Events that AWS KMS creates.

Topics
• KMS CMK Rotation (p. 291)
• KMS Imported Key Material Expiration (p. 291)
• KMS CMK Deletion (p. 292)

KMS CMK Rotation
When you enable automatic key rotation (p. 142) for a customer managed CMK (p. 3), AWS KMS creates
new key material for the CMK each year. The key material for AWS managed CMKs (p. 4) is automatically
rotated every three years.

Whenever AWS KMS rotates key material, it sends a KMS CMK Rotation event to CloudWatch Events. The
following is an example of this event.

{
 "version": "0",
 "id": "6a7e8feb-b491-4cf7-a9f1-bf3703467718",
 "detail-type": "KMS CMK Rotation",
 "source": "aws.kms",
 "account": "111122223333",
 "time": "2016-08-25T21:05:33Z",
 "region": "us-west-2",
 "resources": [
 "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
],
 "detail": {
 "key-id": "1234abcd-12ab-34cd-56ef-1234567890ab"
 }
}

KMS Imported Key Material Expiration
When you import key material into a CMK (p. 147), you can optionally specify a time at which the
key material expires. When the key material expires, AWS KMS deletes the key material and sends a
corresponding event to CloudWatch Events. The following is an example of this event.

{
 "version": "0",
 "id": "9da9af57-9253-4406-87cb-7cc400e43465",
 "detail-type": "KMS Imported Key Material Expiration",
 "source": "aws.kms",
 "account": "111122223333",
 "time": "2016-08-22T20:12:19Z",
 "region": "us-west-2",
 "resources": [
 "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
],

291

https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/

AWS Key Management Service Developer Guide
AWS KMS Events

 "detail": {
 "key-id": "1234abcd-12ab-34cd-56ef-1234567890ab"
 }
}

KMS CMK Deletion
When you schedule key deletion (p. 160) for a CMK, AWS KMS enforces a waiting period before deleting
the CMK. After the waiting period ends, AWS KMS deletes the CMK and sends a corresponding event to
CloudWatch Events. The following is an example of this event.

{
 "version": "0",
 "id": "e9ce3425-7d22-412a-a699-e7a5fc3fbc9a",
 "detail-type": "KMS CMK Deletion",
 "source": "aws.kms",
 "account": "111122223333",
 "time": "2016-08-19T03:23:45Z",
 "region": "us-west-2",
 "resources": [
 "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
],
 "detail": {
 "key-id": "1234abcd-12ab-34cd-56ef-1234567890ab"
 }
}

292

AWS Key Management Service Developer Guide
AWS KMS Information in CloudTrail

Logging AWS KMS API Calls with
AWS CloudTrail

AWS KMS is integrated with AWS CloudTrail, a service that provides a record of actions performed by
a user, role, or an AWS service in AWS KMS. CloudTrail captures all API calls for AWS KMS as events,
including calls from the AWS KMS console and from code calls to the AWS KMS APIs. If you create a
trail, you can enable continuous delivery of CloudTrail events to an Amazon S3 bucket, including events
for AWS KMS. If you don't configure a trail, you can still view the most recent events in the CloudTrail
console in Event history. Using the information collected by CloudTrail, you can determine the request
that was made to AWS KMS, the IP address from which the request was made, who made the request,
when it was made, and additional details.

Although, by default, all AWS KMS actions are logged as CloudTrail events, you can exclude AWS KMS
actions from a CloudTrail trail. For details, see Excluding AWS KMS Events from a Trail (p. 294).

To learn more about CloudTrail, see the AWS CloudTrail User Guide. To learn about other ways to
monitor the use of your CMKs, see Monitoring Customer Master Keys (p. 286).

AWS KMS Information in CloudTrail
CloudTrail is enabled on your AWS account when you create the account. When activity occurs in AWS
KMS, that activity is recorded in a CloudTrail event along with other AWS service events in Event history.
You can view, search, and download recent events in your AWS account. For more information, see
Viewing Events with CloudTrail Event History.

For an ongoing record of events in your AWS account, including events for AWS KMS, create a trail. A
trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default, when you create a trail
in the console, the trail applies to all regions. The trail logs events from all regions in the AWS partition
and delivers the log files to the Amazon S3 bucket that you specify. Additionally, you can configure
other AWS services to further analyze and act upon the event data collected in CloudTrail logs. For more
information, see:

• Overview for Creating a Trail
• CloudTrail Supported Services and Integrations
• Configuring Amazon SNS Notifications for CloudTrail
• Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail Log Files from Multiple

Accounts

CloudTrail logs all AWS KMS operations, including read-only operations, such as ListAliases
and GetKeyPolicy, operations that manage CMKs, such as CreateKey and PutKeyPolicy, and
cryptographic operations, such as GenerateDataKey, Encrypt, and Decrypt. Every operation
generates an entry in the CloudTrail log files.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or IAM user credentials.
• Whether the request was made with temporary security credentials for a role or federated user.

293

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html

AWS Key Management Service Developer Guide
Excluding AWS KMS Events from a Trail

• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity Element.

Excluding AWS KMS Events from a Trail
Most AWS KMS users rely on the events in a CloudTrail trail to provide a record of the use and
management of their AWS KMS resources. The trail can be an valuable source of data for auditing critical
events, such as creating, disabling, and deleting customer master keys (CMKs), changing key policy, and
the use of your CMKs by AWS services on your behalf. In some cases, the metadata in a CloudTrail log
entry, such as the encryption context (p. 12) in an encryption operation, can help you to avoid or resolve
errors.

However, because AWS KMS can generate a large number of events, AWS CloudTrail lets you exclude
AWS KMS events from a trail. This per-trail setting excludes all AWS KMS events; you cannot exclude
particular AWS KMS events.

Warning
Excluding AWS KMS events from a CloudTrail Log can obscure actions that use your CMKs. Be
cautious when giving principals the cloudtrail:PutEventSelectors permission that is
required to perform this operation.

To exclude AWS KMS events from a trail:

• In the CloudTrail console, use the Log Key Management Service events setting when you create a
trail or update a trail. For instructions, see Logging Management Events with the AWS Management
Console in the AWS CloudTrail User Guide.

• In the CloudTrail API, use the PutEventSelectors operation. Add the
ExcludeManagementEventSources attribute to your event selectors with a value of
kms.amazonaws.com. For an example, see Example: A trail that does not log AWS Key Management
Service events in the AWS CloudTrail User Guide.

You can disable this exclusion at any time by changing the console setting or the event selectors for a
trail. The trail will then start recording AWS KMS events. However, it cannot recover AWS KMS events
that occurred while the exclusion was effective.

When you exclude KMS events by using the console or API, the resulting CloudTrail
PutEventSelectors API operation is also logged in your CloudTrail Logs. If KMS events
don't appear in your CloudTrail Logs, look for a PutEventSelectors event with the
ExcludeManagementEventSources attribute set to kms.amazonaws.com.

Understanding AWS KMS Log File Entries
A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that you
specify. CloudTrail log files contain one or more log entries. An event represents a single request from
any source and includes information about the requested action, the date and time of the action, request
parameters, and so on. CloudTrail log files are not an ordered stack trace of the public API calls, so they
do not appear in any specific order.

For examples CloudTrail log entries for each API request, see the following topics.

Topics

294

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-the-console-first-time.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-the-console-first-time.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-update-a-trail-console.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-management-and-data-events-with-cloudtrail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-management-and-data-events-with-cloudtrail.html
https://docs.aws.amazon.com/awscloudtrail/latest/APIReference/API_PutEventSelectors.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-additional-cli-commands.html#configuring-event-selector-example-kms
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-additional-cli-commands.html#configuring-event-selector-example-kms

AWS Key Management Service Developer Guide
CreateAlias

• CreateAlias (p. 295)

• CreateGrant (p. 296)

• CreateKey (p. 297)

• Decrypt (p. 298)

• DeleteAlias (p. 298)

• DescribeKey (p. 299)

• DisableKey (p. 300)

• EnableKey (p. 301)

• Encrypt (p. 302)

• GenerateDataKey (p. 302)

• GenerateDataKeyWithoutPlaintext (p. 303)

• GenerateRandom (p. 304)

• GetKeyPolicy (p. 304)

• ListAliases (p. 305)

• ListGrants (p. 306)

• ReEncrypt (p. 306)

• Amazon EC2 Example One (p. 307)

• Amazon EC2 Example Two (p. 309)

CreateAlias
The following example shows a log file generated by calling CreateAlias.

{
 "Records": [
 {
 "eventVersion": "1.02",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:user/Alice",
 "accountId": "123456789012",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2014-11-04T00:52:27Z"
 }
 }
 },
 "eventTime": "2014-11-04T00:52:27Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "CreateAlias",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "AWS Internal",
 "requestParameters": {
 "aliasName": "alias/my_alias",
 "targetKeyId": "arn:aws:kms:us-east-1:123456789012:key/64e07f97-2489-4d04-
bfdf-41723ad130bd"
 },
 "responseElements": null,
 "requestID": "d9472f40-63bc-11e4-bc2b-4198b6150d5c",

295

AWS Key Management Service Developer Guide
CreateGrant

 "eventID": "f72d3993-864f-48d6-8f16-e26e1ae8dff0",
 "readOnly": false,
 "resources": [{
 "ARN": "arn:aws:kms:us-east-1:123456789012:key/64e07f97-2489-4d04-
bfdf-41723ad130bd",
 "accountId": "123456789012"
 },
 {
 "ARN": "arn:aws:kms:us-east-1:123456789012:alias/my_alias",
 "accountId": "123456789012"
 }],
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
 }
]
}

CreateGrant
The following example shows a log file generated by calling CreateGrant.

{
 "Records": [
 {
 "eventVersion": "1.02",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:user/Alice",
 "accountId": "123456789012",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2014-11-04T00:53:12Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "CreateGrant",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "AWS Internal",
 "requestParameters": {
 "keyId": "arn:aws:kms:us-east-1:123456789012:key/65f61d18-
c45c-41ca-90c9-179982e9b716",
 "constraints": {
 "encryptionContextSubset": {
 "ContextKey1": "Value1"
 }
 },
 "operations": ["Encrypt",
 "RetireGrant"],
 "granteePrincipal": "EX_PRINCIPAL_ID"
 },
 "responseElements": {
 "grantId": "f020fe75197b93991dc8491d6f19dd3cebb24ee62277a05914386724f3d48758"
 },
 "requestID": "f3c08808-63bc-11e4-bc2b-4198b6150d5c",
 "eventID": "5d529779-2d27-42b5-92da-91aaea1fc4b5",
 "readOnly": false,
 "resources": [{
 "ARN": "arn:aws:kms:us-east-1:123456789012:key/65f61d18-
c45c-41ca-90c9-179982e9b716",
 "accountId": "123456789012"
 }],
 "eventType": "AwsApiCall",

296

AWS Key Management Service Developer Guide
CreateKey

 "recipientAccountId": "123456789012"
 }
]
}

CreateKey
The following example shows a log file generated by calling CreateKey.

{
 "Records": [
 {
 "eventVersion": "1.02",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:user/Alice",
 "accountId": "123456789012",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2014-11-04T00:52:59Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "CreateKey",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "AWS Internal",
 "requestParameters": {
 "policy": "{\n \"Version\":\"2012-10-17\",\n \"Statement\":[{\n \"Effect
\":\"Allow\",\n \"Principal\":{\"AWS\":\"arn:aws:iam::123456789012:user/Alice\"},\n
 \"Action\":\"kms:*\",\n \"Resource\":\"*\"\n }, {\n \"Effect\":\"Allow\",\n
 \"Principal\":{\"AWS\":\"arn:aws:iam::012345678901:user/Bob\"},\n \"Action\":
\"kms:CreateGrant\",\n \"Resource\":\"*\"\n }, {\n \"Effect\":\"Allow\",\n
 \"Principal\":{\"AWS\":\"arn:aws:iam::012345678901:user/Charlie\"},\n \"Action\":
\"kms:Encrypt\",\n \"Resource\":\"*\"\n}]\n}",
 "description": "",
 "keyUsage": "ENCRYPT_DECRYPT"
 },
 "responseElements": {
 "keyMetadata": {
 "AWSAccountId": "123456789012",
 "enabled": true,
 "creationDate": "Nov 4, 2014 12:52:59 AM",
 "keyId": "06dc80ca-1bdc-4d0b-be5b-b7009cd14f13",
 "keyUsage": "ENCRYPT_DECRYPT",
 "description": "",
 "arn": "arn:aws:kms:us-east-1:123456789012:key/06dc80ca-1bdc-4d0b-be5b-
b7009cd14f13"
 }
 },
 "requestID": "ebe8ee68-63bc-11e4-bc2b-4198b6150d5c",
 "eventID": "ba116326-1792-4784-87dd-a688d1cb42ec",
 "readOnly": false,
 "resources": [{
 "ARN": "arn:aws:kms:us-east-1:123456789012:key/06dc80ca-1bdc-4d0b-be5b-
b7009cd14f13",
 "accountId": "123456789012"
 }],
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
 }
]
}

297

AWS Key Management Service Developer Guide
Decrypt

Decrypt
The following example shows a log file generated by calling Decrypt.

{
 "Records": [
 {
 "eventVersion": "1.02",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:user/Alice",
 "accountId": "123456789012",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2014-11-04T00:52:20Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "Decrypt",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "AWS Internal",
 "errorCode": "InvalidCiphertextException",
 "requestParameters": null,
 "responseElements": null,
 "requestID": "d5239dea-63bc-11e4-bc2b-4198b6150d5c",
 "eventID": "954983cf-7da9-4adf-aeaa-261a1292c0aa",
 "readOnly": true,
 "resources": [{
 "ARN": "arn:aws:kms:us-east-1:123456789012:key/e17cebae-e7a6-4864-
b92f-0365f2feff38",
 "accountId": "123456789012"
 }],
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
 }
]
}

DeleteAlias
The following example shows a log file generated by calling DeleteAlias.

{
 "Records": [
 {
 "eventVersion": "1.02",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:user/Alice",
 "accountId": "123456789012",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2014-11-04T00:52:27Z"
 }
 }
 },
 "eventTime": "2014-11-04T00:52:27Z",

298

AWS Key Management Service Developer Guide
DescribeKey

 "eventSource": "kms.amazonaws.com",
 "eventName": "DeleteAlias",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "AWS Internal",
 "requestParameters": {
 "aliasName": "alias/my_alias"
 },
 "responseElements": null,
 "requestID": "d9542792-63bc-11e4-bc2b-4198b6150d5c",
 "eventID": "12f48554-bb04-4991-9cfc-e7e85f68eda0",
 "readOnly": false,
 "resources": [{
 "ARN": "arn:aws:kms:us-east-1:123456789012:alias/my_alias",
 "accountId": "123456789012"
 },
 {
 "ARN": "arn:aws:kms:us-east-1:123456789012:key/64e07f97-2489-4d04-
bfdf-41723ad130bd",
 "accountId": "123456789012"
 }],
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
 }
]
}

DescribeKey
The following example shows a log file that records multiple calls to DescribeKey. These calls were the
result of viewing keys (p. 22) in the AWS KMS management console.

{
 "Records": [
 {
 "eventVersion": "1.02",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:user/Alice",
 "accountId": "123456789012",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2014-11-05T20:51:21Z"
 }
 },
 "invokedBy": "signin.amazonaws.com"
 },
 "eventTime": "2014-11-05T20:51:34Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "DescribeKey",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "signin.amazonaws.com",
 "requestParameters": {
 "keyId": "30a9a1e7-2a84-459d-9c61-04cbeaebab95"
 },
 "responseElements": null,
 "requestID": "874d4823-652d-11e4-9a87-01af2a1ddecb",
 "eventID": "f715da9b-c52c-4824-99ae-88aa1bb58ae4",

299

https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html

AWS Key Management Service Developer Guide
DisableKey

 "readOnly": true,
 "resources": [
 {
 "ARN": "arn:aws:kms:us-
east-1:123456789012:key/30a9a1e7-2a84-459d-9c61-04cbeaebab95",
 "accountId": "123456789012"
 }
],
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
 },
 {
 "eventVersion": "1.02",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:user/Alice",
 "accountId": "123456789012",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2014-11-05T20:51:21Z"
 }
 },
 "invokedBy": "signin.amazonaws.com"
 },
 "eventTime": "2014-11-05T20:51:55Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "DescribeKey",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "signin.amazonaws.com",
 "requestParameters": {
 "keyId": "e7b6d35a-b551-4c8f-b51a-0460ebc04565"
 },
 "responseElements": null,
 "requestID": "9400c720-652d-11e4-9a87-01af2a1ddecb",
 "eventID": "939fcefb-dc14-4a52-b918-73045fe97af3",
 "readOnly": true,
 "resources": [
 {
 "ARN": "arn:aws:kms:us-east-1:123456789012:key/e7b6d35a-b551-4c8f-
b51a-0460ebc04565",
 "accountId": "123456789012"
 }
],
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
 }
]
}

DisableKey
The following example shows a log file generated by calling DisableKey.

{
 "Records": [
 {
 "eventVersion": "1.02",
 "userIdentity": {

300

AWS Key Management Service Developer Guide
EnableKey

 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:user/Alice",
 "accountId": "123456789012",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2014-11-04T00:52:43Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "DisableKey",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "AWS Internal",
 "requestParameters": {
 "keyId": "262d9fcb-f1a0-4447-af16-3714cff61ec1"
 },
 "responseElements": null,
 "requestID": "e26552bc-63bc-11e4-bc2b-4198b6150d5c",
 "eventID": "995c4653-3c53-4a06-a0f0-f5531997b741",
 "readOnly": false,
 "resources": [{
 "ARN": "arn:aws:kms:us-east-1:123456789012:key/262d9fcb-f1a0-4447-
af16-3714cff61ec1",
 "accountId": "123456789012"
 }],
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
 }
]
}

EnableKey
The following example shows a log file generated by calling EnableKey.

{
 "Records": [
 {
 "eventVersion": "1.02",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:user/Alice",
 "accountId": "123456789012",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2014-11-04T00:52:20Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "EnableKey",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "AWS Internal",
 "requestParameters": {
 "keyId": "e17cebae-e7a6-4864-b92f-0365f2feff38"
 },
 "responseElements": null,
 "requestID": "d528a6fb-63bc-11e4-bc2b-4198b6150d5c",
 "eventID": "be393928-3629-4370-9634-567f9274d52e",
 "readOnly": false,
 "resources": [{
 "ARN": "arn:aws:kms:us-east-1:123456789012:key/e17cebae-e7a6-4864-
b92f-0365f2feff38",

301

AWS Key Management Service Developer Guide
Encrypt

 "accountId": "123456789012"
 }],
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
 }
]
}

Encrypt
The following example shows a log file generated by calling Encrypt.

{
 "Records": [
 {
 "eventVersion": "1.02",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:user/Alice",
 "accountId": "123456789012",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2014-11-04T00:53:11Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "Encrypt",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "AWS Internal",
 "requestParameters": {
 "encryptionContext": {
 "ContextKey1": "Value1"
 },
 "keyId": "arn:aws:kms:us-east-1:012345678901:key/8d3acf57-6bba-480a-9459-
ed1b8e79d3d0"
 },
 "responseElements": null,
 "requestID": "f3423043-63bc-11e4-bc2b-4198b6150d5c",
 "eventID": "91235988-eb87-476a-ac2c-0cdc244e6dca",
 "readOnly": true,
 "resources": [{
 "ARN": "arn:aws:kms:us-east-1:012345678901:key/8d3acf57-6bba-480a-9459-
ed1b8e79d3d0",
 "accountId": "012345678901"
 }],
 "eventType": "AwsServiceEvent",
 "recipientAccountId": "012345678901"
 }
]
}

GenerateDataKey
The following example shows a log file created by calling GenerateDataKey.

{
 "Records": [
 {
 "eventVersion": "1.02",
 "userIdentity": {

302

AWS Key Management Service Developer Guide
GenerateDataKeyWithoutPlaintext

 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:user/Alice",
 "accountId": "123456789012",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2014-11-04T00:52:40Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "GenerateDataKey",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "AWS Internal",
 "requestParameters": {
 "keyId": "637e8678-3d08-4922-a650-e77eb1591db5",
 "numberOfBytes": 32
 },
 "responseElements": null,
 "requestID": "e0eb83e3-63bc-11e4-bc2b-4198b6150d5c",
 "eventID": "a9dea4f9-8395-46c0-942c-f509c02c2b71",
 "readOnly": true,
 "resources": [{
 "ARN": "arn:aws:kms:us-east-1:123456789012:key/637e8678-3d08-4922-a650-
e77eb1591db5",
 "accountId": "123456789012"
 }],
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
 }
]
}

GenerateDataKeyWithoutPlaintext
The following example shows a log file created by calling GenerateDataKeyWithoutPlaintext.

{
 "Records": [
 {
 "eventVersion": "1.02",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:user/Alice",
 "accountId": "123456789012",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2014-11-04T00:52:23Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "GenerateDataKeyWithoutPlaintext",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "AWS Internal",
 "errorCode": "InvalidKeyUsageException",
 "requestParameters": {
 "keyId": "d4f2a88d-5f9c-4807-b71d-4d0ee5225156",
 "numberOfBytes": 16
 },
 "responseElements": null,
 "requestID": "d6b8e411-63bc-11e4-bc2b-4198b6150d5c",
 "eventID": "f7734272-9ec5-4c80-9f36-528ebbe35e4a",
 "readOnly": true,

303

AWS Key Management Service Developer Guide
GenerateRandom

 "resources": [{
 "ARN": "arn:aws:kms:us-east-1:123456789012:key/d4f2a88d-5f9c-4807-
b71d-4d0ee5225156",
 "accountId": "123456789012"
 }],
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
 }
]
}

GenerateRandom
The following example shows a log file created by calling GenerateRandom.

{
 "Records": [
 {
 "eventVersion": "1.02",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:user/Alice",
 "accountId": "123456789012",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2014-11-04T00:52:37Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "GenerateRandom",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "AWS Internal",
 "requestParameters": null,
 "responseElements": null,
 "requestID": "df1e3de6-63bc-11e4-bc2b-4198b6150d5c",
 "eventID": "239cb9f7-ae05-4c94-9221-6ea30eef0442",
 "readOnly": true,
 "resources": [],
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
 }
]
}

GetKeyPolicy
The following example shows a log file generated by calling GetKeyPolicy.

{
 "Records": [
 {
 "eventVersion": "1.02",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:user/Alice",
 "accountId": "123456789012",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },

304

AWS Key Management Service Developer Guide
ListAliases

 "eventTime": "2014-11-04T00:50:30Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "GetKeyPolicy",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "AWS Internal",
 "requestParameters": {
 "keyId": "arn:aws:kms:us-east-1:123456789012:key/e923fe55-
d3ef-4f9c-89a1-2752f98c3a70",
 "policyName": "default"
 },
 "responseElements": null,
 "requestID": "93746dd6-63bc-11e4-bc2b-4198b6150d5c",
 "eventID": "4aa7e4d5-d047-452a-a5a6-2cce282a7e82",
 "readOnly": true,
 "resources": [{
 "ARN": "arn:aws:kms:us-east-1:123456789012:key/e923fe55-
d3ef-4f9c-89a1-2752f98c3a70",
 "accountId": "123456789012"
 }],
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
 }
]
}

ListAliases
The following example shows a log file generated by calling ListAliases.

{
 "Records": [
 {
 "eventVersion": "1.02",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:user/Alice",
 "accountId": "123456789012",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2014-11-04T00:51:45Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "ListAliases",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "AWS Internal",
 "requestParameters": {
 "limit": 5,
 "marker":
 "eyJiIjoiYWxpYXMvZTU0Y2MxOTMtYTMwNC00YzEwLTliZWItYTJjZjA3NjA2OTJhIiwiYSI6ImFsaWFzL2U1NGNjMTkzLWEzMDQtNGMxMC05YmViLWEyY2YwNzYwNjkyYSJ9"
 },
 "responseElements": null,
 "requestID": "bfe6c190-63bc-11e4-bc2b-4198b6150d5c",
 "eventID": "a27dda7b-76f1-4ac3-8b40-42dfba77bcd6",
 "readOnly": true,
 "resources": [],
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
 }
]
}

305

AWS Key Management Service Developer Guide
ListGrants

ListGrants
The following example shows a log file generated by calling ListGrants.

{
 "Records": [
 {
 "eventVersion": "1.02",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:user/Alice",
 "accountId": "123456789012",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2014-11-04T00:52:49Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "ListGrants",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "AWS Internal",
 "requestParameters": {
 "keyId": "arn:aws:kms:us-east-1:123456789012:key/ea22a751-
e707-40d0-92ac-13a28fa9eb11",
 "marker":
 "eyJncmFudElkIjoiMWY4M2U2ZmM0YTY2NDgxYjQ2Yzc4MTdhM2Y4YmQwMDFkZDNiYmQ1MGVlYTMyY2RmOWFiNWY1Nzc1NDNjYmNmMyIsImtleUFybiI6ImFybjphd3M6dHJlbnQtc2FuZGJveDp1cy1lYXN0LTE6NTc4Nzg3Njk2NTMwOmtleS9lYTIyYTc1MS1lNzA3LTQwZDAtOTJhYy0xM2EyOGZhOWViMTEifQ
\u003d\u003d",
 "limit": 10
 },
 "responseElements": null,
 "requestID": "e5c23960-63bc-11e4-bc2b-4198b6150d5c",
 "eventID": "d24380f5-1b20-4253-8e92-dd0492b3bd3d",
 "readOnly": true,
 "resources": [{
 "ARN": "arn:aws:kms:us-east-1:123456789012:key/ea22a751-
e707-40d0-92ac-13a28fa9eb11",
 "accountId": "123456789012"
 }],
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
 }
]
}

ReEncrypt
The following example shows a log file generated by calling ReEncrypt.

{
 "Records": [
 {
 "eventVersion": "1.02",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:user/Alice",
 "accountId": "123456789012",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2014-11-04T00:52:19Z",

306

AWS Key Management Service Developer Guide
Amazon EC2 Example One

 "eventSource": "kms.amazonaws.com",
 "eventName": "ReEncrypt",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "AWS Internal",
 "requestParameters": {
 "destinationKeyId": "arn:aws:kms:us-east-1:123456789012:key/116b8956-
a086-40f1-96d6-4858ef794ba5"
 },
 "responseElements": null,
 "requestID": "d3eeee63-63bc-11e4-bc2b-4198b6150d5c",
 "eventID": "627c13b4-8791-4983-a80b-4c28807b964c",
 "readOnly": false,
 "resources": [{
 "ARN": "arn:aws:kms:us-east-1:123456789012:key/ff0c0fc1-cbaa-41ab-
a267-69481da8a4c8",
 "accountId": "123456789012"
 },
 {
 "ARN": "arn:aws:kms:us-east-1:123456789012:key/116b8956-
a086-40f1-96d6-4858ef794ba5",
 "accountId": "123456789012"
 }],
 "eventType": "AwsServiceEvent",
 "recipientAccountId": "123456789012"
 }
]
}

Amazon EC2 Example One
The following example demonstrates an IAM user creating an encrypted volume using the default
volume key in the Amazon EC2 management console.

The following example shows a CloudTrail log entry that demonstrates the user Alice creating an
encrypted volume using a default volume key in AWS EC2 Management Console. The EC2 log file
record includes a volumeId field with a value of "vol-13439757". The AWS KMS record contains
an encryptionContext field with a value of "aws:ebs:id": "vol-13439757". Similarly, the
principalId and accountId between the two records match. The records reflect the fact that
creating an encrypted volume generates a data key that is used to encrypt the volume content.

{
 "Records": [
 {
 "eventVersion": "1.02",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:user/Alice",
 "accountId": "123456789012",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2014-11-05T20:40:44Z"
 }
 },
 "invokedBy": "signin.amazonaws.com"
 },
 "eventTime": "2014-11-05T20:50:18Z",
 "eventSource": "ec2.amazonaws.com",

307

AWS Key Management Service Developer Guide
Amazon EC2 Example One

 "eventName": "CreateVolume",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "72.72.72.72",
 "userAgent": "signin.amazonaws.com",
 "requestParameters": {
 "size": "10",
 "zone": "us-east-1a",
 "volumeType": "gp2",
 "encrypted": true
 },
 "responseElements": {
 "volumeId": "vol-13439757",
 "size": "10",
 "zone": "us-east-1a",
 "status": "creating",
 "createTime": 1415220618876,
 "volumeType": "gp2",
 "iops": 30,
 "encrypted": true
 },
 "requestID": "1565210e-73d0-4912-854c-b15ed349e526",
 "eventID": "a3447186-135f-4b00-8424-bc41f1a93b4f",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
 },
 {
 "eventVersion": "1.02",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:user/Alice",
 "accountId": "123456789012",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2014-11-05T20:40:44Z"
 }
 },
 "invokedBy": "AWS Internal"
 },
 "eventTime": "2014-11-05T20:50:19Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "GenerateDataKeyWithoutPlaintext",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "AWS Internal",
 "userAgent": "AWS Internal",
 "requestParameters": {
 "encryptionContext": {
 "aws:ebs:id": "vol-13439757"
 },
 "numberOfBytes": 64,
 "keyId": "alias/aws/ebs"
 },
 "responseElements": null,
 "requestID": "create-123456789012-758241111-1415220618",
 "eventID": "4bd2a696-d833-48cc-b72c-05e61b608399",
 "readOnly": true,
 "resources": [
 {
 "ARN": "arn:aws:kms:us-east-1:123456789012:key/
e29ddfd4-1bf6-4e1b-8ecb-08216bd70d07",
 "accountId": "123456789012"
 }
],

308

AWS Key Management Service Developer Guide
Amazon EC2 Example Two

 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
 }
]
}

Amazon EC2 Example Two
The following example shows an IAM user running an Amazon EC2 instance that mounts a data
volume encrypted by using a default volume key. The action taken by the user generates multiple AWS
KMS log records. Creating the encrypted volume generates a data key, and the Amazon EC2 service
generates a grant, on behalf of the customer, that enables it to decrypt the data key. The instanceId,
"i-81e2f56c", is referred to in the granteePrincipal field of the CreateGrant record as
"123456789012:aws:ec2-infrastructure:i-81e2f56c" as well as in the identity of the principal
calling Decrypt, "arn:aws:sts::123456789012:assumed-role/aws:ec2-infrastructure/
i-81e2f56c". The key identified by the UUID "e29ddfd4-1bf6-4e1b-8ecb-08216bd70d07" is
common across all three KMS calls.

{
 "Records": [
 {
 "eventVersion": "1.02",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:user/Alice",
 "accountId": "123456789012",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2014-11-05T21:34:36Z"
 }
 },
 "invokedBy": "signin.amazonaws.com"
 },
 "eventTime": "2014-11-05T21:35:27Z",
 "eventSource": "ec2.amazonaws.com",
 "eventName": "RunInstances",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "72.72.72.72",
 "userAgent": "signin.amazonaws.com",
 "requestParameters": {
 "instancesSet": {
 "items": [
 {
 "imageId": "ami-b66ed3de",
 "minCount": 1,
 "maxCount": 1
 }
]
 },
 "groupSet": {
 "items": [
 {
 "groupId": "sg-98b6e0f2"
 }
]
 },
 "instanceType": "m3.medium",
 "blockDeviceMapping": {

309

AWS Key Management Service Developer Guide
Amazon EC2 Example Two

 "items": [
 {
 "deviceName": "/dev/xvda",
 "ebs": {
 "volumeSize": 8,
 "deleteOnTermination": true,
 "volumeType": "gp2"
 }
 },
 {
 "deviceName": "/dev/sdb",
 "ebs": {
 "volumeSize": 8,
 "deleteOnTermination": false,
 "volumeType": "gp2",
 "encrypted": true
 }
 }
]
 },
 "monitoring": {
 "enabled": false
 },
 "disableApiTermination": false,
 "instanceInitiatedShutdownBehavior": "stop",
 "clientToken": "XdKUT141516171819",
 "ebsOptimized": false
 },
 "responseElements": {
 "reservationId": "r-5ebc9f74",
 "ownerId": "123456789012",
 "groupSet": {
 "items": [
 {
 "groupId": "sg-98b6e0f2",
 "groupName": "launch-wizard-2"
 }
]
 },
 "instancesSet": {
 "items": [
 {
 "instanceId": "i-81e2f56c",
 "imageId": "ami-b66ed3de",
 "instanceState": {
 "code": 0,
 "name": "pending"
 },
 "amiLaunchIndex": 0,
 "productCodes": {

 },
 "instanceType": "m3.medium",
 "launchTime": 1415223328000,
 "placement": {
 "availabilityZone": "us-east-1a",
 "tenancy": "default"
 },
 "monitoring": {
 "state": "disabled"
 },
 "stateReason": {
 "code": "pending",
 "message": "pending"
 },
 "architecture": "x86_64",

310

AWS Key Management Service Developer Guide
Amazon EC2 Example Two

 "rootDeviceType": "ebs",
 "rootDeviceName": "/dev/xvda",
 "blockDeviceMapping": {

 },
 "virtualizationType": "hvm",
 "hypervisor": "xen",
 "clientToken": "XdKUT1415223327917",
 "groupSet": {
 "items": [
 {
 "groupId": "sg-98b6e0f2",
 "groupName": "launch-wizard-2"
 }
]
 },
 "networkInterfaceSet": {

 },
 "ebsOptimized": false
 }
]
 }
 },
 "requestID": "41c4b4f7-8bce-4773-bf0e-5ae3bb5cbce2",
 "eventID": "cd75a605-2fee-4fda-b847-9c3d330ebaae",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
 },
 {
 "eventVersion": "1.02",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:user/Alice",
 "accountId": "123456789012",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2014-11-05T21:34:36Z"
 }
 },
 "invokedBy": "AWS Internal"
 },
 "eventTime": "2014-11-05T21:35:35Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "CreateGrant",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "AWS Internal",
 "userAgent": "AWS Internal",
 "requestParameters": {
 "constraints": {
 "encryptionContextSubset": {
 "aws:ebs:id": "vol-f67bafb2"
 }
 },
 "granteePrincipal": "123456789012:aws:ec2-infrastructure:i-81e2f56c",
 "keyId": "arn:aws:kms:us-east-1:123456789012:key/
e29ddfd4-1bf6-4e1b-8ecb-08216bd70d07"
 },
 "responseElements": {
 "grantId": "6caf442b4ff8a27511fb6de3e12cc5342f5382112adf75c1a91dbd221ec356fe"
 },
 "requestID": "41c4b4f7-8bce-4773-bf0e-5ae3bb5cbce2",

311

AWS Key Management Service Developer Guide
Amazon EC2 Example Two

 "eventID": "c1ad79e3-0d3f-402a-b119-d5c31d7c6a6c",
 "readOnly": false,
 "resources": [
 {
 "ARN": "arn:aws:kms:us-east-1:123456789012:key/
e29ddfd4-1bf6-4e1b-8ecb-08216bd70d07",
 "accountId": "123456789012"
 }
],
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
 },
 {
 "eventVersion": "1.02",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:user/Alice",
 "accountId": "123456789012",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2014-11-05T21:34:36Z"
 }
 },
 "invokedBy": "AWS Internal"
 },
 "eventTime": "2014-11-05T21:35:32Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "GenerateDataKeyWithoutPlaintext",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "AWS Internal",
 "userAgent": "AWS Internal",
 "requestParameters": {
 "encryptionContext": {
 "aws:ebs:id": "vol-f67bafb2"
 },
 "numberOfBytes": 64,
 "keyId": "alias/aws/ebs"
 },
 "responseElements": null,
 "requestID": "create-123456789012-758247346-1415223332",
 "eventID": "ac3cab10-ce93-4953-9d62-0b6e5cba651d",
 "readOnly": true,
 "resources": [
 {
 "ARN": "arn:aws:kms:us-east-1:123456789012:key/
e29ddfd4-1bf6-4e1b-8ecb-08216bd70d07",
 "accountId": "123456789012"
 }
],
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
 },
 {
 "eventVersion": "1.02",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "123456789012:aws:ec2-infrastructure:i-81e2f56c",
 "arn": "arn:aws:sts::123456789012:assumed-role/aws:ec2-infrastructure/i-81e2f56c",
 "accountId": "123456789012",
 "accessKeyId": "",
 "sessionContext": {
 "attributes": {

312

AWS Key Management Service Developer Guide
Amazon EC2 Example Two

 "mfaAuthenticated": "false",
 "creationDate": "2014-11-05T21:35:38Z"
 },
 "sessionIssuer": {
 "type": "Role",
 "principalId": "123456789012:aws:ec2-infrastructure",
 "arn": "arn:aws:iam::123456789012:role/aws:ec2-infrastructure",
 "accountId": "123456789012",
 "userName": "aws:ec2-infrastructure"
 }
 }
 },
 "eventTime": "2014-11-05T21:35:47Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "Decrypt",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "172.172.172.172",
 "requestParameters": {
 "encryptionContext": {
 "aws:ebs:id": "vol-f67bafb2"
 }
 },
 "responseElements": null,
 "requestID": "b4b27883-6533-11e4-b4d9-751f1761e9e5",
 "eventID": "edb65380-0a3e-4123-bbc8-3d1b7cff49b0",
 "readOnly": true,
 "resources": [
 {
 "ARN": "arn:aws:kms:us-east-1:123456789012:key/
e29ddfd4-1bf6-4e1b-8ecb-08216bd70d07",
 "accountId": "123456789012"
 }
],
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
 }
]
}

313

AWS Key Management Service Developer Guide
Creating a Client

Programming the AWS KMS API
You can use the AWS KMS API to perform the following actions, and more.

• Create, describe, list, enable, and disable keys.
• Create, delete, list, and update aliases.
• Encrypt, decrypt, and re-encrypt content.
• Set, list, and retrieve key policies.
• Create, retire, revoke, and list grants.
• Retrieve key rotation status.
• Update key descriptions.
• Generate data keys with or without plaintext.
• Generate random data.

The sample code in the following topics show how to use the AWS SDKs to call the AWS KMS API.

Topics
• Creating a Client (p. 314)
• Working With Keys (p. 315)
• Encrypting and Decrypting Data Keys (p. 324)
• Working with Key Policies (p. 330)
• Working with Grants (p. 337)
• Working with Aliases (p. 344)

Creating a Client
To use the AWS SDK for Java, the AWS SDK for .NET, the AWS SDK for Python (Boto 3), the AWS SDK for
Ruby, the AWS SDK for PHP, or the AWS SDK for JavaScript in Node.js to write code that uses the AWS
Key Management Service (AWS KMS) API, start by creating an AWS KMS client.

The client object that you create is used in the example code in the topics that follow.

Java

To create an AWS KMS client in Java, use the client builder.

AWSKMS kmsClient = AWSKMSClientBuilder.standard().build();

For more information about using the Java client builder, see the following resources.

• Fluent Client Builders on the AWS Developer Blog
• Creating Service Clients in the AWS SDK for Java Developer Guide
• AWSKMSClientBuilder in the AWS SDK for Java API Reference

C#

AmazonKeyManagementServiceClient kmsClient = new AmazonKeyManagementServiceClient();

314

https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/sdk-for-net/
https://aws.amazon.com/sdk-for-python/
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/KMS.html
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/KMS.html
https://aws.amazon.com/sdk-for-php/
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/KMS.html
https://docs.aws.amazon.com/kms/latest/APIReference/
https://docs.aws.amazon.com/kms/latest/APIReference/
https://aws.amazon.com/blogs/developer/fluent-client-builders/
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/creating-clients.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html?com/amazonaws/services/kms/AWSKMSClientBuilder.html

AWS Key Management Service Developer Guide
Working With Keys

Python

kms_client = boto3.client('kms')

Ruby

require 'aws-sdk-kms' # in v2: require 'aws-sdk'

kmsClient = Aws::KMS::Client.new

PHP

To create an AWS KMS client in PHP, use an AWS KMS client object, and specify version
2014-11-01. For more information see the KMSClient class in the AWS SDK for PHP API Reference.

// Create a KMSClient
$KmsClient = new Aws\Kms\KmsClient([
 'profile' => 'default',
 'version' => '2014-11-01',
 'region' => 'us-east-1'
]);

Node.js

const kmsClient = new AWS.KMS();

Working With Keys
The examples in this topic use the AWS KMS API to create, view, enable, and disable AWS KMS customer
master keys, and to generate data keys.

Topics
• Creating a Customer Master Key (p. 315)
• Generating a Data Key (p. 317)
• Viewing a Custom Master Key (p. 319)
• Getting Key IDs and Key ARNs of Customer Master Keys (p. 320)
• Enabling Customer Master Keys (p. 321)
• Disabling Customer Master Keys (p. 323)

Creating a Customer Master Key
To create a customer master key (p. 2), use the CreateKey operation.

This example uses the AWS KMS client object that you created in Creating a Client (p. 314).

Java

For details, see the createKey method in the AWS SDK for Java API Reference.

// Create a CMK
//
String desc = "Key for protecting critical data";

315

https://docs.aws.amazon.com/aws-sdk-php/v3/api/class-Aws.Kms.KmsClient.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateKey.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/kms/AWSKMSClient.html#createKey-com.amazonaws.services.kms.model.CreateKeyRequest-

AWS Key Management Service Developer Guide
Creating a Customer Master Key

CreateKeyRequest req = new CreateKeyRequest().withDescription(desc);
CreateKeyResult result = kmsClient.createKey(req);

C#

For details, see the CreateKey method in the AWS SDK for .NET.

// Create a CMK
//
String desc = "Key for protecting critical data";

CreateKeyRequest req = new CreateKeyRequest()
{
 Description = desc
};
CreateKeyResponse response = kmsClient.CreateKey(req);

Python

For details, see the create_key method in the AWS SDK for Python (Boto 3).

Create a CMK

desc = 'Key for protecting critical data'

response = kms_client.create_key(
 Description=desc
)

Ruby

For details, see the create_key instance method in the AWS SDK for Ruby.

Create a CMK

desc = 'Key for protecting critical data'

response = kmsClient.create_key({
 description: desc
})

PHP

For details, see the CreateKey method in the AWS SDK for PHP.

// Create a CMK
//
$desc = "Key for protecting critical data";

$result = $KmsClient->createKey([
 'Description' => $desc
]);

Node.js

For details, see the createKey property in the AWS SDK for JavaScript in Node.js.

// Create a CMK
//
const Description = 'Key for protecting critical data';

316

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/KeyManagementService/MKeyManagementServiceCreateKeyCreateKeyRequest.html
http://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/kms.html#KMS.Client.create_key
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/KMS/Client.html#create_key-instance_method
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/KMS.html
https://docs.aws.amazon.com/aws-sdk-php/v3/api/api-kms-2014-11-01.html#createkey
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/KMS.html#createKey-property

AWS Key Management Service Developer Guide
Generating a Data Key

kmsClient.createKey({ Description }, (err, data) => {
 ...
});

Generating a Data Key
To generate a data key, use the GenerateDataKey operation. This operation returns plaintext and
encrypted copies of the data key that it creates.

This example uses the AWS KMS client object that you created in Creating a Client (p. 314).

Java

For details, see the generateDataKey method in the AWS SDK for Java API Reference.

// Generate a data key
//
// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
String keyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

GenerateDataKeyRequest dataKeyRequest = new GenerateDataKeyRequest();
dataKeyRequest.setKeyId(keyId);
dataKeyRequest.setKeySpec("AES_256");

GenerateDataKeyResult dataKeyResult = kmsClient.generateDataKey(dataKeyRequest);

ByteBuffer plaintextKey = dataKeyResult.getPlaintext();

ByteBuffer encryptedKey = dataKeyResult.getCiphertextBlob();

C#

For details, see the GenerateDataKey method in the AWS SDK for .NET.

// Generate a data key
//
// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
String keyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
GenerateDataKeyRequest dataKeyRequest = new GenerateDataKeyRequest()
{
 KeyId = keyId,
 KeySpec = DataKeySpec.AES_256
};

GenerateDataKeyResponse dataKeyResponse = kmsClient.GenerateDataKey(dataKeyRequest);

MemoryStream plaintextKey = dataKeyResponse.Plaintext;

MemoryStream encryptedKey = dataKeyResponse.CiphertextBlob;

Python

For details, see the generate_date_key method in the AWS SDK for Python (Boto 3).

Generate a data key

Replace the following fictitious CMK ARN with a valid CMK ID or ARN

317

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/kms/AWSKMSClient.html#generateDataKey-com.amazonaws.services.kms.model.GenerateDataKeyRequest-
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/KeyManagementService/MKeyManagementServiceGenerateDataKeyGenerateDataKeyRequest.html
http://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/kms.html#KMS.Client.generate_data_key

AWS Key Management Service Developer Guide
Generating a Data Key

key_id = 'arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

response = kms_client.generate_data_key(
 KeyId=key_id,
 KeySpec='AES_256'
)

plaintext_key = response['Plaintext']

encrypted_key = response['CiphertextBlob']

Ruby

For details, see the generate_data_key instance method in the AWS SDK for Ruby.

Generate a data key

Replace the following fictitious CMK ARN with a valid CMK ID or ARN
keyId = 'arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

response = kmsClient.generate_data_key({
 key_id: keyId,
 key_spec: 'AES_256'
})

plaintextKey = response.plaintext

encryptedKey = response.ciphertext_blob

PHP

For details, see the GenerateDataKey method in the AWS SDK for PHP.

// Generate a data key
//
// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
$keyId = 'arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab';
$keySpec = 'AES_256';

$result = $KmsClient->generateDataKey([
 'KeyId' => $keyId,
 'KeySpec' => $keySpec,
]);

$plaintextKey = $result['Plaintext'];

$encryptedKey = $result['CiphertextBlob'];

Node.js

For details, see the generateDataKey property in the AWS SDK for JavaScript in Node.js.

// Generate a data key
//
// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
const KeyId = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab';
const KeySpec = 'AES_256';
kmsClient.generateDataKey({ KeyId, KeySpec }, (err, data) => {
 if (err) console.log(err, err.stack);
 else {
 const { CiphertextBlob, Plaintext } = data;

318

https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/KMS/Client.html#generate_data_key-instance_method
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/KMS.html
https://docs.aws.amazon.com/aws-sdk-php/v3/api/api-kms-2014-11-01.html#generatedatakey
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/KMS.html#generateDataKey-property

AWS Key Management Service Developer Guide
Viewing a Custom Master Key

 ...
 }
});

Viewing a Custom Master Key
To get detailed information about a customer master key (CMK), including the CMK ARN and key
state (p. 223), use the DescribeKey operation.

DescribeKey does not get aliases. To get aliases, use the ListAliases operation.

This example uses the AWS KMS client object that you created in Creating a Client (p. 314).

Java

For details, see the describeKey method in the AWS SDK for Java API Reference.

// Describe a CMK
//
// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
String keyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

DescribeKeyRequest req = new DescribeKeyRequest().withKeyId(keyId);
DescribeKeyResult result = kmsClient.describeKey(req);

C#

For details, see the DescribeKey method in the AWS SDK for .NET.

// Describe a CMK
//
// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
String keyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

DescribeKeyRequest describeKeyRequest = new DescribeKeyRequest()
{
 KeyId = keyId
};

DescribeKeyResponse describeKeyResponse = kmsClient.DescribeKey(describeKeyRequest);

Python

For details, see the describe_key method in the AWS SDK for Python (Boto 3).

Describe a CMK

Replace the following fictitious CMK ARN with a valid CMK ID or ARN
key_id = 'arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

response = kms_client.describe_key(
 KeyId=key_id
)

Ruby

For details, see the describe_key instance method in the AWS SDK for Ruby.

319

https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ListAliases.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/kms/AWSKMS.html#describeKey-com.amazonaws.services.kms.model.DescribeKeyRequest-
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/KeyManagementService/MKeyManagementServiceDescribeKeyDescribeKeyRequest.html
http://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/kms.html#KMS.Client.describe_key
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/KMS/Client.html#describe_key-instance_method
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/KMS.html

AWS Key Management Service Developer Guide
Getting Key IDs and Key ARNs of Customer Master Keys

Describe a CMK

Replace the following fictitious CMK ARN with a valid CMK ID or ARN
keyId = 'arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

response = kmsClient.describe_key({
 key_id: keyId
})

PHP

For details, see the DescribeKey method in the AWS SDK for PHP.

// Describe a CMK
//
// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
$keyId = 'arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab';

$result = $KmsClient->describeKey([
 'KeyId' => $keyId,
]);

Node.js

For details, see the describeKey property in the AWS SDK for JavaScript in Node.js.

// Describe a CMK
//
// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
const KeyId = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab';
kmsClient.describeKey({ KeyId }, (err, data) => {
 ...
});

Getting Key IDs and Key ARNs of Customer Master
Keys
To get the IDs and ARNs of the customer master keys, use the ListKeys operation.

This example uses the AWS KMS client object that you created in Creating a Client (p. 314).

Java

For details, see the listKeys method in the AWS SDK for Java API Reference.

// List CMKs in this account
//
Integer limit = 10;

ListKeysRequest req = new ListKeysRequest().withLimit(limit);
ListKeysResult result = kmsClient.listKeys(req);

C#

For details, see the ListKeys method in the AWS SDK for .NET.

320

https://docs.aws.amazon.com/aws-sdk-php/v3/api/api-kms-2014-11-01.html#describekey
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/KMS.html#describeKey-property
https://docs.aws.amazon.com/kms/latest/APIReference/API_ListKeys.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/kms/AWSKMSClient.html#listKeys-com.amazonaws.services.kms.model.ListKeysRequest-
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/KeyManagementService/MKeyManagementServiceListKeysListKeysRequest.html

AWS Key Management Service Developer Guide
Enabling Customer Master Keys

// List CMKs in this account
//
int limit = 10;

ListKeysRequest listKeysRequest = new ListKeysRequest()
{
 Limit = limit
};
ListKeysResponse listKeysResponse = kmsClient.ListKeys(listKeysRequest);

Python

For details, see the list_keys method in the AWS SDK for Python (Boto 3).

List CMKs in this account

response = kms_client.list_keys(
 Limit=10
)

Ruby

For details, see the list_keys instance method in the AWS SDK for Ruby.

List CMKS in this account

response = kmsClient.list_keys({
 limit: 10
})

PHP

For details, see the ListKeys method in the AWS SDK for PHP.

// List CMKs in this account
//
$limit = 10;

$result = $KmsClient->listKeys([
 'Limit' => $limit,
]);

Node.js

For details, see the listKeys property in the AWS SDK for JavaScript in Node.js.

// List CMKs in this account
//
const Limit = 10;
kmsClient.listKeys({ Limit }, (err, data) => {
 ...
});

Enabling Customer Master Keys
To enable a disabled customer master key (CMK), use the EnableKey operation.

This example uses the AWS KMS client object that you created in Creating a Client (p. 314).

321

http://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/kms.html#KMS.Client.list_keys
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/KMS/Client.html#list_keys-instance_method
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/KMS.html
https://docs.aws.amazon.com/aws-sdk-php/v3/api/api-kms-2014-11-01.html#listkeys
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/KMS.html#listKeys-property
https://docs.aws.amazon.com/kms/latest/APIReference/API_EnableKey.html

AWS Key Management Service Developer Guide
Enabling Customer Master Keys

Java

For details about the Java implementation, see the enableKey method in the AWS SDK for Java API
Reference.

// Enable a CMK
//
// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
String keyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

EnableKeyRequest req = new EnableKeyRequest().withKeyId(keyId);
kmsClient.enableKey(req);

C#

For details, see the EnableKey method in the AWS SDK for .NET.

// Enable a CMK
//
// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
String keyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

EnableKeyRequest enableKeyRequest = new EnableKeyRequest()
{
 KeyId = keyId
};
kmsClient.EnableKey(enableKeyRequest);

Python

For details, see the enable_key method in the AWS SDK for Python (Boto 3).

Enable a CMK

Replace the following fictitious CMK ARN with a valid CMK ID or ARN
key_id = 'arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

response = kms_client.enable_key(
 KeyId=key_id
)

Ruby

For details, see the enable_key instance method in the AWS SDK for Ruby.

Enable a CMK

Replace the following fictitious CMK ARN with a valid CMK ID or ARN
keyId = 'arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

response = kmsClient.enable_key({
 key_id: keyId
})

PHP

For details, see the EnableKey method in the AWS SDK for PHP.

// Enable a CMK

322

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/kms/AWSKMSClient.html#enableKey-com.amazonaws.services.kms.model.EnableKeyRequest-
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/KeyManagementService/MKeyManagementServiceEnableKeyEnableKeyRequest.html
http://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/kms.html#KMS.Client.enable_key
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/KMS/Client.html#enable_key-instance_method
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/KMS.html
https://docs.aws.amazon.com/aws-sdk-php/v3/api/api-kms-2014-11-01.html#enablekey

AWS Key Management Service Developer Guide
Disabling Customer Master Keys

//
// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
$keyId = 'arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab';

$result = $KmsClient->enableKey([
 'KeyId' => $keyId,
]);

Node.js

For details, see the enableKey property in the AWS SDK for JavaScript in Node.js.

// Enable a CMK
//
// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
const KeyId = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab';
kmsClient.enableKey({ KeyId }, (err, data) => {
 ...
});

Disabling Customer Master Keys
To disable a CMK, use the DisableKey operation. Disabling a CMK prevents it from being used.

This example uses the AWS KMS client object that you created in Creating a Client (p. 314).

Java

For details, see the disableKey method in the AWS SDK for Java API Reference.

// Disable a CMK
//
// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
String keyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

DisableKeyRequest req = new DisableKeyRequest().withKeyId(keyId);
kmsClient.disableKey(req);

C#

For details, see the DisableKey method in the AWS SDK for .NET.

// Disable a CMK
//
// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
String keyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

DisableKeyRequest disableKeyRequest = new DisableKeyRequest()
{
 KeyId = keyId
};
kmsClient.DisableKey(disableKeyRequest);

Python

For details, see the disable_key method in the AWS SDK for Python (Boto 3).

323

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/KMS.html#enableKey-property
https://docs.aws.amazon.com/kms/latest/APIReference/API_DisableKey.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/kms/AWSKMSClient.html#disableKey-com.amazonaws.services.kms.model.DisableKeyRequest-
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/KeyManagementService/MKeyManagementServiceDisableKeyDisableKeyRequest.html
http://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/kms.html#KMS.Client.disable_key

AWS Key Management Service Developer Guide
Encrypting and Decrypting Data Keys

Disable a CMK

Replace the following fictitious CMK ARN with a valid CMK ID or ARN
key_id = 'arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

response = kms_client.disable_key(
 KeyId=key_id
)

Ruby

For details, see the disable_key instance method in the AWS SDK for Ruby.

Disable a CMK

Replace the following fictitious CMK ARN with a valid CMK ID or ARN
keyId = 'arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

response = kmsClient.disable_key({
 key_id: keyId
})

PHP

For details, see the DisableKey method in the AWS SDK for PHP.

// Disable a CMK
//
// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
$keyId = 'arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab';

$result = $KmsClient->disableKey([
 'KeyId' => $keyId,
]);

Node.js

For details, see the disableKey property in the AWS SDK for JavaScript in Node.js.

// Disable a CMK
//
// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
const KeyId = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab';
kmsClient.disableKey({ KeyId }, (err, data) => {
 ...
});

Encrypting and Decrypting Data Keys
The examples in this topic use the Encrypt, Decrypt, and ReEncrypt operations in the AWS KMS API.

These operations are designed to encrypt and decrypt data keys (p. 4). They use an AWS KMS customer
master key (p. 2) (CMK) in the encryption operations and they cannot accept more than 4 KB (4096
bytes) of data. Although you might use them to encrypt small amounts of data, such as a password or
RSA key, they are not designed to encrypt application data.

324

https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/KMS/Client.html#disable_key-instance_method
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/KMS.html
https://docs.aws.amazon.com/aws-sdk-php/v3/api/api-kms-2014-11-01.html#disablekey
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/KMS.html#disableKey-property
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html

AWS Key Management Service Developer Guide
Encrypting a Data Key

To encrypt application data, use the server-side encryption features of an AWS service, or a client-side
encryption library, such as the AWS Encryption SDK or the Amazon S3 encryption client.

Topics

• Encrypting a Data Key (p. 325)

• Decrypting a Data Key (p. 327)

• Re-Encrypting a Data Key Under a Different Customer Master Key (p. 328)

Encrypting a Data Key
The Encrypt operation is designed to encrypt data keys, but it is not frequently used. The
GenerateDataKey and GenerateDataKeyWithoutPlaintext operations return encrypted data keys. You
might use this method when you are moving encrypted data to a new region and want to encrypt its
data key with a CMK in the new region.

This example uses the AWS KMS client object that you created in Creating a Client (p. 314).

Java

For details, see the encrypt method in the AWS SDK for Java API Reference.

// Encrypt a data key
//
// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
String keyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
ByteBuffer plaintext = ByteBuffer.wrap(new byte[]{1,2,3,4,5,6,7,8,9,0});

EncryptRequest req = new EncryptRequest().withKeyId(keyId).withPlaintext(plaintext);
ByteBuffer ciphertext = kmsClient.encrypt(req).getCiphertextBlob();

C#

For details, see the Encrypt method in the AWS SDK for .NET.

// Encrypt a data key
//
// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
String keyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
MemoryStream plaintext = new MemoryStream();
plaintext.Write(new byte[] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 }, 0, 10);

EncryptRequest encryptRequest = new EncryptRequest()
{
 KeyId = keyId,
 Plaintext = plaintext
};
MemoryStream ciphertext = kmsClient.Encrypt(encryptRequest).CiphertextBlob;

Python

For details, see the encrypt method in the AWS SDK for Python (Boto 3).

Encrypt a data key

Replace the following fictitious CMK ARN with a valid CMK ID or ARN

325

https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingClientSideEncryption.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/kms/AWSKMSClient.html#encrypt-com.amazonaws.services.kms.model.EncryptRequest-
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/KeyManagementService/MKeyManagementServiceEncryptEncryptRequest.html
http://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/kms.html#KMS.Client.encrypt

AWS Key Management Service Developer Guide
Encrypting a Data Key

key_id = 'arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'
plaintext = b'\x01\x02\x03\x04\x05\x06\x07\x08\x09\x00'

response = kms_client.encrypt(
 KeyId=key_id,
 Plaintext=plaintext
)

ciphertext = response['CiphertextBlob']

Ruby

For details, see the encrypt instance method in the AWS SDK for Ruby.

Encrypt a data key

Replace the following fictitious CMK ARN with a valid CMK ID or ARN
keyId = 'arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'
plaintext = "\x01\x02\x03\x04\x05\x06\x07\x08\x09\x00"

response = kmsClient.encrypt({
 key_id: keyId,
 plaintext: plaintext
})

ciphertext = response.ciphertext_blob

PHP

For details, see the Encrypt method in the AWS SDK for PHP.

// Encrypt a data key
//
// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
$keyId = 'arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab';
$message = pack('c*',1,2,3,4,5,6,7,8,9,0);

$result = $KmsClient->encrypt([
 'KeyId' => $keyId,
 'Plaintext' => $message,
]);

$ciphertext = $result['CiphertextBlob'];

Node.js

For details, see the encrypt property in the AWS SDK for JavaScript in Node.js.

// Encrypt a data key
//
// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
const KeyId = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab';
const Plaintext = Buffer.from([1, 2, 3, 4, 5, 6, 7, 8, 9, 0]);
kmsClient.encrypt({ KeyId, Plaintext }, (err, data) => {
 if (err) console.log(err, err.stack); // an error occurred
 else {
 const { CiphertextBlob } = data;
 ...
 }
});

326

https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/KMS/Client.html#encrypt-instance_method
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/KMS.html
https://docs.aws.amazon.com/aws-sdk-php/v3/api/api-kms-2014-11-01.html#encrypt
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/KMS.html#encrypt-property

AWS Key Management Service Developer Guide
Decrypting a Data Key

Decrypting a Data Key
To decrypt a data key, use the Decrypt operation.

The ciphertextBlob that you specify must be the value of the CiphertextBlob field from a
GenerateDataKey, GenerateDataKeyWithoutPlaintext, or Encrypt response.

This example uses the AWS KMS client object that you created in Creating a Client (p. 314).

Java

For details, see the decrypt method in the AWS SDK for Java API Reference.

// Decrypt a data key
//

ByteBuffer ciphertextBlob = Place your ciphertext here;

DecryptRequest req = new DecryptRequest().withCiphertextBlob(ciphertextBlob);
ByteBuffer plainText = kmsClient.decrypt(req).getPlaintext();

C#

For details, see the Decrypt method in the AWS SDK for .NET.

// Decrypt a data key
//

MemoryStream ciphertextBlob = new MemoryStream();
// Write ciphertext to memory stream

DecryptRequest decryptRequest = new DecryptRequest()
{
 CiphertextBlob = ciphertextBlob
};
MemoryStream plainText = kmsClient.Decrypt(decryptRequest).Plaintext;

Python

For details, see the decrypt method in the AWS SDK for Python (Boto 3).

Decrypt a data key

ciphertext = 'Place your ciphertext here'

response = kms_client.decrypt(
 CiphertextBlob=ciphertext
)

plaintext = response['Plaintext']

Ruby

For details, see the decrypt instance method in the AWS SDK for Ruby.

Decrypt a data key

ciphertext = 'Place your ciphertext here'
ciphertext_packed = [ciphertext].pack("H*")

327

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/kms/AWSKMSClient.html#decrypt-com.amazonaws.services.kms.model.DecryptRequest-
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/KeyManagementService/MKeyManagementServiceDecryptDecryptRequest.html
http://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/kms.html#KMS.Client.decrypt
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/KMS/Client.html#decrypt-instance_method
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/KMS.html

AWS Key Management Service Developer Guide
Re-Encrypting a Data Key Under
a Different Customer Master Key

response = kmsClient.decrypt({
 ciphertext_blob: ciphertext_packed
})

plaintext = response.plaintext

PHP

For details, see the Decrypt method in the AWS SDK for PHP.

// Decrypt a data key
//
$ciphertext = 'Place your cipher text blob here';

$result = $KmsClient->decrypt([
 'CiphertextBlob' => $ciphertext
]);

$plaintext = $result['Plaintext'];

Node.js

For details, see the decrypt property] in the AWS SDK for JavaScript in Node.js.

// Decrypt a data key
//
const CiphertextBlob = 'Place your cipher text blob here';
kmsClient.decrypt({ CiphertextBlob }, (err, data) => {
 if (err) console.log(err, err.stack); // an error occurred
 else {
 const { Plaintext } = data;
 ...
 }
});

Re-Encrypting a Data Key Under a Different Customer
Master Key
To decrypt an encrypted data key, and then immediately re-encrypt the data key under a different
customer master key (CMK), use the ReEncrypt operation. The operations are performed entirely on the
server side within AWS KMS, so they never expose your plaintext outside of AWS KMS.

The ciphertextBlob that you specify must be the value of the CiphertextBlob field from a
GenerateDataKey, GenerateDataKeyWithoutPlaintext, or Encrypt response.

This example uses the AWS KMS client object that you created in Creating a Client (p. 314).

Java

For details, see the reEncrypt method in the AWS SDK for Java API Reference.

// Re-encrypt a data key

ByteBuffer sourceCiphertextBlob = Place your ciphertext here;

// Replace the following fictitious CMK ARN with a valid CMK ID or ARN

328

https://docs.aws.amazon.com/aws-sdk-php/v3/api/api-kms-2014-11-01.html#decrypt
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/KMS.html#decrypt-property
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/kms/AWSKMSClient.html#reEncrypt-com.amazonaws.services.kms.model.ReEncryptRequest-

AWS Key Management Service Developer Guide
Re-Encrypting a Data Key Under
a Different Customer Master Key

String destinationKeyId = "arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321";

ReEncryptRequest req = new ReEncryptRequest();
req.setCiphertextBlob(sourceCiphertextBlob);
req.setDestinationKeyId(destinationKeyId);
ByteBuffer destinationCipherTextBlob = kmsClient.reEncrypt(req).getCiphertextBlob();

C#

For details, see the ReEncrypt method in the AWS SDK for .NET.

// Re-encrypt a data key

MemoryStream sourceCiphertextBlob = new MemoryStream();
// Write ciphertext to memory stream

// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
String destinationKeyId = "arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321";

ReEncryptRequest reEncryptRequest = new ReEncryptRequest()
{
 CiphertextBlob = sourceCiphertextBlob,
 DestinationKeyId = destinationKeyId
};
MemoryStream destinationCipherTextBlob =
 kmsClient.ReEncrypt(reEncryptRequest).CiphertextBlob;

Python

For details, see the re_encrypt method in the AWS SDK for Python (Boto 3).

Re-encrypt a data key
ciphertext = 'Place your ciphertext here'

Replace the following fictitious CMK ARN with a valid CMK ID or ARN
key_id = 'arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321'

response = kms_client.re_encrypt(
 CiphertextBlob=ciphertext,
 DestinationKeyId=key_id
)

destination_ciphertext_blob = response['CiphertextBlob']

Ruby

For details, see the re_encrypt instance method in the AWS SDK for Ruby.

Re-encrypt a data key

ciphertext = 'Place your ciphertext here'
ciphertext_packed = [ciphertext].pack("H*")

Replace the following fictitious CMK ARN with a valid CMK ID or ARN
keyId = 'arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321'

response = kmsClient.re_encrypt({
 ciphertext_blob: ciphertext_packed,
 destination_key_id: keyId

329

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/KeyManagementService/MKeyManagementServiceReEncryptReEncryptRequest.html
http://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/kms.html#KMS.Client.re_encrypt
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/KMS/Client.html#re_encrypt-instance_method
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/KMS.html

AWS Key Management Service Developer Guide
Working with Key Policies

})

destination_ciphertext_blob = response.ciphertext_blob.unpack('H*')

PHP

For details, see the ReEncrypt method in the AWS SDK for PHP.

// Re-encrypt a data key

$ciphertextBlob = 'Place your ciphertext here';

// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
$keyId = 'arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321';

$result = $KmsClient->reEncrypt([
 'CiphertextBlob' => $ciphertextBlob,
 'DestinationKeyId' => $keyId,
]);

Node.js

For details, see the reEncrypt property in the AWS SDK for JavaScript in Node.js.

// Re-encrypt a data key
const CiphertextBlob = 'Place your cipher text blob here';
// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
const DestinationKeyId = 'arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321';
kmsClient.reEncrypt({ CiphertextBlob, DestinationKeyId }, (err, data) => {
 ...
});

Working with Key Policies
The examples in this topic use the AWS KMS API to view and change the key policies of AWS KMS
customer master keys (CMKs). For details about how to use key policies and IAM policies to manage
access to your CMKs, see Authentication and Access Control for AWS KMS (p. 46).

Topics
• Listing Key Policy Names (p. 330)
• Getting a Key Policy (p. 332)
• Setting a Key Policy (p. 334)

Listing Key Policy Names
To get the names of key policies for a customer master key, use the ListKeyPolicies operation. The only
key policy name it returns is default.

This example uses the AWS KMS client object that you created in Creating a Client (p. 314).

Java

For details about the Java implementation, see the listKeyPolicies method in the AWS SDK for Java
API Reference.

330

https://docs.aws.amazon.com/aws-sdk-php/v3/api/api-kms-2014-11-01.html#reencrypt
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/KMS.html#reEncrypt-property
https://docs.aws.amazon.com/kms/latest/APIReference/API_ListKeyPolicies.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/kms/AWSKMSClient.html#listKeyPolicies-com.amazonaws.services.kms.model.ListKeyPoliciesRequest-

AWS Key Management Service Developer Guide
Listing Key Policy Names

// List key policies
//
// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
String keyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

ListKeyPoliciesRequest req = new ListKeyPoliciesRequest().withKeyId(keyId);
ListKeyPoliciesResult result = kmsClient.listKeyPolicies(req);

C#

For details, see the ListKeyPolicies method in the AWS SDK for .NET.

// List key policies
//
// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
String keyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

ListKeyPoliciesRequest listKeyPoliciesRequest = new ListKeyPoliciesRequest()
{
 KeyId = keyId
};
ListKeyPoliciesResponse listKeyPoliciesResponse =
 kmsClient.ListKeyPolicies(listKeyPoliciesRequest);

Python

For details, see the list_key_policies method in the AWS SDK for Python (Boto 3).

List key policies

Replace the following fictitious CMK ARN with a valid CMK ID or ARN
key_id = 'arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

response = kms_client.list_key_policies(
 KeyId=key_id
)

Ruby

For details, see the list_key_policies instance method in the AWS SDK for Ruby.

List key policies

Replace the following fictitious CMK ARN with a valid CMK ID or ARN
keyId = 'arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

response = kmsClient.list_key_policies({
 key_id: keyId
})

PHP

For details, see the ListKeyPolicies method in the AWS SDK for PHP.

// List key policies
//
// Replace the following fictitious CMK ARN with a valid CMK ID or ARN

331

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/KeyManagementService/MKeyManagementServiceListKeyPoliciesListKeyPoliciesRequest.html
http://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/kms.html#KMS.Client.list_key_policies
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/KMS/Client.html#list_key_policies-instance_method
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/KMS.html
https://docs.aws.amazon.com/aws-sdk-php/v3/api/api-kms-2014-11-01.html#listkeypolicies

AWS Key Management Service Developer Guide
Getting a Key Policy

$keyId = 'arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab';

$result = $KmsClient->listKeyPolicies([
 'KeyId' => $keyId
]);

Node.js

For details, see the listKeyPolicies property in the AWS SDK for JavaScript in Node.js.

// List key policies
//
// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
const KeyId = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab';

kmsClient.listKeyPolicies({ KeyId }, (err, data) => {
 ...
});

Getting a Key Policy
To get the key policy for a customer master key, use the GetKeyPolicy operation.

GetKeyPolicy requires a policy name. The only valid policy name is default.

This example uses the AWS KMS client object that you created in Creating a Client (p. 314).

Java

For details, see the getKeyPolicy method in the AWS SDK for Java API Reference.

// Get the policy for a CMK
//
// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
String keyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
String policyName = "default";

GetKeyPolicyRequest req = new
 GetKeyPolicyRequest().withKeyId(keyId).withPolicyName(policyName);
GetKeyPolicyResult result = kmsClient.getKeyPolicy(req);

C#

For details, see the GetKeyPolicy method in the AWS SDK for .NET.

// Get the policy for a CMK
//
// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
String keyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
String policyName = "default";

GetKeyPolicyRequest getKeyPolicyRequest = new GetKeyPolicyRequest()
{
 KeyId = keyId,
 PolicyName = policyName
};

332

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/KMS.html#listKeyPolicies-property
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetKeyPolicy.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/kms/AWSKMSClient.html#getKeyPolicy-com.amazonaws.services.kms.model.GetKeyPolicyRequest-
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/KeyManagementService/MKeyManagementServiceGetKeyPolicyGetKeyPolicyRequest.html

AWS Key Management Service Developer Guide
Getting a Key Policy

GetKeyPolicyResponse getKeyPolicyResponse =
 kmsClient.GetKeyPolicy(getKeyPolicyRequest);

Python

For details, see the get_key_policy method in the AWS SDK for Python (Boto 3).

Get the policy for a CMK

Replace the following fictitious CMK ARN with a valid CMK ID or ARN
key_id = 'arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'
policy_name = 'default'

response = kms_client.get_key_policy(
 KeyId=key_id,
 PolicyName=policy_name
)

Ruby

For details, see the get_key_policy instance method in the AWS SDK for Ruby.

Get the policy for a CMK

Replace the following fictitious CMK ARN with a valid CMK ID or ARN
keyId = 'arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'
policyName = 'default'

response = kmsClient.get_key_policy({
 key_id: keyId,
 policy_name: policyName
})

PHP

For details, see the GetKeyPolicy method in the AWS SDK for PHP.

// Get the policy for a CMK
//
// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
$keyId = 'arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab';
$policyName = "default";

$result = $KmsClient->getKeyPolicy([
 'KeyId' => $keyId,
 'PolicyName' => $policyName
]);

Node.js

For details, see the getKeyPolicy property in the AWS SDK for JavaScript in Node.js.

// Get the policy for a CMK
//
// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
const KeyId = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab';
const PolicyName = 'default';
kmsClient.getKeyPolicy({ KeyId, PolicyName }, (err, data) => {
 ...
});

333

http://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/kms.html#KMS.Client.get_key_policy
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/KMS/Client.html#get_key_policy-instance_method
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/KMS.html
https://docs.aws.amazon.com/aws-sdk-php/v3/api/api-kms-2014-11-01.html#getkeypolicy
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/KMS.html#getKeyPolicy-property

AWS Key Management Service Developer Guide
Setting a Key Policy

Setting a Key Policy
To establish or change a key policy for a CMK, use the PutKeyPolicy operation.

PutKeyPolicy requires a policy name. The only valid policy name is default.

This example uses the AWS KMS client object that you created in Creating a Client (p. 314).

Java

For details, see the putKeyPolicy method in the AWS SDK for Java API Reference.

// Set a key policy for a CMK
//
// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
String keyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
String policyName = "default";
String policy = "{" +
 " \"Version\": \"2012-10-17\"," +
 " \"Statement\": [{" +
 " \"Sid\": \"Allow access for ExampleUser\"," +
 " \"Effect\": \"Allow\"," +
 // Replace the following user ARN with one for a real user.
 " \"Principal\": {\"AWS\": \"arn:aws:iam::111122223333:user/
ExampleUser\"}," +
 " \"Action\": [" +
 " \"kms:Encrypt\"," +
 " \"kms:GenerateDataKey*\"," +
 " \"kms:Decrypt\"," +
 " \"kms:DescribeKey\"," +
 " \"kms:ReEncrypt*\"" +
 "]," +
 " \"Resource\": \"*\"" +
 " }]" +
 "}";

PutKeyPolicyRequest req = new
 PutKeyPolicyRequest().withKeyId(keyId).withPolicy(policy).withPolicyName(policyName);
kmsClient.putKeyPolicy(req);

C#

For details, see the PutKeyPolicy method in the AWS SDK for .NET.

// Set a key policy for a CMK
//
// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
String keyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
String policyName = "default";
String policy = "{" +
 " \"Version\": \"2012-10-17\"," +
 " \"Statement\": [{" +
 " \"Sid\": \"Allow access for ExampleUser\"," +
 " \"Effect\": \"Allow\"," +
 // Replace the following user ARN with one for a real user.
 " \"Principal\": {\"AWS\": \"arn:aws:iam::111122223333:user/
ExampleUser\"}," +
 " \"Action\": [" +
 " \"kms:Encrypt\"," +
 " \"kms:GenerateDataKey*\"," +
 " \"kms:Decrypt\"," +

334

https://docs.aws.amazon.com/kms/latest/APIReference/API_PutKeyPolicy.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/kms/AWSKMSClient.html#putKeyPolicy-com.amazonaws.services.kms.model.PutKeyPolicyRequest-
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/KeyManagementService/MKeyManagementServicePutKeyPolicyPutKeyPolicyRequest.html

AWS Key Management Service Developer Guide
Setting a Key Policy

 " \"kms:DescribeKey\"," +
 " \"kms:ReEncrypt*\"" +
 "]," +
 " \"Resource\": \"*\"" +
 " }]" +
 "}";

PutKeyPolicyRequest putKeyPolicyRequest = new PutKeyPolicyRequest()
{
 KeyId = keyId,
 Policy = policy,
 PolicyName = policyName
};
kmsClient.PutKeyPolicy(putKeyPolicyRequest);

Python

For details, see the put_key_policy method in the AWS SDK for Python (Boto 3).

Set a key policy for a CMK

Replace the following fictitious CMK ARN with a valid CMK ID or ARN
key_id = 'arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'
policy_name = 'default'
policy = """
{
 "Version": "2012-10-17",
 "Statement": [{
 "Sid": "Allow access for ExampleUser",
 "Effect": "Allow",
 "Principal": {"AWS": "arn:aws:iam::111122223333:user/ExampleUser"},
 "Action": [
 "kms:Encrypt",
 "kms:GenerateDataKey*",
 "kms:Decrypt",
 "kms:DescribeKey",
 "kms:ReEncrypt*"
],
 "Resource": "*"
 }]
}"""

response = kms_client.put_key_policy(
 KeyId=key_id,
 Policy=policy,
 PolicyName=policy_name
)

Ruby

For details, see the put_key_policy instance method in the AWS SDK for Ruby.

Set a key policy for a CMK

Replace the following fictitious CMK ARN with a valid CMK ID or ARN
keyId = 'arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'
policyName = 'default'
policy = "{\n
\n "Version": "2012-10-17",
\n "Statement": [{
\n "Sid": "Allow access for ExampleUser",
\n "Effect": "Allow",
\n "Principal": {"AWS": "arn:aws:iam::111122223333:user/ExampleUser"},

335

http://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/kms.html#KMS.Client.put_key_policy
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/KMS/Client.html#put_key_policy-instance_method
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/KMS.html

AWS Key Management Service Developer Guide
Setting a Key Policy

\n "Action": [
\n "kms:Encrypt",
\n "kms:GenerateDataKey*",
\n "kms:Decrypt",
\n "kms:DescribeKey",
\n "kms:ReEncrypt*"
\n],
\n "Resource": "*"
\n }]
\n}\n"

response = kmsClient.put_key_policy({
 key_id: keyId,
 policy: policy,
 policy_name: policyName
})

PHP

For details, see the PutKeyPolicy method in the AWS SDK for PHP.

// Set a key policy for a CMK
//
// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
$keyId = 'arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab';
$policyName = "default";

$result = $KmsClient->putKeyPolicy([
 'KeyId' => $keyId,
 'PolicyName' => $policyName,
 'Policy' => '{
 "Version": "2012-10-17",
 "Id": "custom-policy-2016-12-07",
 "Statement": [
 { "Sid": "Enable IAM User Permissions",
 "Effect": "Allow",
 "Principal":
 { "AWS": "arn:aws:iam::111122223333:user/root" },
 "Action": ["kms:*"],
 "Resource": "*" },
 { "Sid": "Enable IAM User Permissions",
 "Effect": "Allow",
 "Principal":
 { "AWS": "arn:aws:iam::111122223333:user/ExampleUser" },
 "Action": [
 "kms:Encrypt*",
 "kms:GenerateDataKey*",
 "kms:Decrypt*",
 "kms:DescribeKey*",
 "kms:ReEncrypt*"
],
 "Resource": "*" }
]
 } '
]);

Node.js

For details, see the putKeyPolicy property in the AWS SDK for Node.js.

// Set a key policy for a CMK
//
// Replace the following fictitious CMK ARN with a valid CMK ID or ARN

336

https://docs.aws.amazon.com/aws-sdk-php/v3/api/api-kms-2014-11-01.html#putkeypolicy
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/KMS.html#putKeyPolicy-property

AWS Key Management Service Developer Guide
Working with Grants

const KeyId = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab';
const PolicyName = 'default';
const Policy = `{
 "Version": "2012-10-17",
 "Id": "custom-policy-2016-12-07",
 "Statement": [
 {
 "Sid": "Enable IAM User Permissions",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:root"
 },
 "Action": "kms:*",
 "Resource": "*"
 },
 {
 "Sid": "Enable IAM User Permissions",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:user/ExampleUser"
 },
 "Action": [
 "kms:Encrypt*",
 "kms:GenerateDataKey*",
 "kms:Decrypt*",
 "kms:DescribeKey*",
 "kms:ReEncrypt*"
],
 "Resource": "*"
 }
]
}`; // The key policy document

kmsClient.putKeyPolicy({ KeyId, Policy, PolicyName }, (err, data) => {
 ...
});

Working with Grants
The examples in this topic use the AWS KMS API to create, view, retire, and revoke grants on AWS KMS
customer master keys (CMKs).

Topics
• Creating a Grant (p. 337)
• Viewing a Grant (p. 339)
• Retiring a Grant (p. 341)
• Revoking a Grant (p. 342)

Creating a Grant
To create a grant for an AWS KMS customer master key, use the CreateGrant operation.

This example uses the AWS KMS client object that you created in Creating a Client (p. 314).

Java

For details, see the createGrant method in the AWS SDK for Java API Reference.

337

https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateGrant.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/kms/AWSKMSClient.html#createGrant-com.amazonaws.services.kms.model.CreateGrantRequest-

AWS Key Management Service Developer Guide
Creating a Grant

// Create a grant
//
// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
String keyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
String granteePrincipal = "arn:aws:iam::111122223333:user/Alice";
String operation = GrantOperation.GenerateDataKey.toString();

CreateGrantRequest request = new CreateGrantRequest()
 .withKeyId(keyId)
 .withGranteePrincipal(granteePrincipal)
 .withOperations(operation);

CreateGrantResult result = kmsClient.createGrant(request);

C#

For details, see the CreateGrant method in the AWS SDK for .NET.

// Create a grant
//
// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
String keyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
String granteePrincipal = "arn:aws:iam::111122223333:user/Alice";
String operation = GrantOperation.GenerateDataKey;

CreateGrantRequest createGrantRequest = new CreateGrantRequest()
{
 KeyId = keyId,
 GranteePrincipal = granteePrincipal,
 Operations = new List<string>() { operation }
};

CreateGrantResponse createGrantResult = kmsClient.CreateGrant(createGrantRequest);

Python

For details, see the create_grant method in the AWS SDK for Python (Boto 3).

Create a grant

Replace the following fictitious CMK ARN with a valid CMK ID or ARN
key_id = 'arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'
grantee_principal = 'arn:aws:iam::111122223333:user/Alice'
operation = ['GenerateDataKey']

response = kms_client.create_grant(
 KeyId=key_id,
 GranteePrincipal=grantee_principal,
 Operations=operation
)

Ruby

For details, see the create_grant instance method in the AWS SDK for Ruby.

Create a grant

Replace the following fictitious CMK ARN with a valid CMK ID or ARN
keyId = 'arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'
granteePrincipal = 'arn:aws:iam::111122223333:user/Alice'

338

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/KeyManagementService/MKeyManagementServiceCreateGrantCreateGrantRequest.html
http://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/kms.html#KMS.Client.create_grant
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/KMS/Client.html#create_grant-instance_method
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/KMS.html

AWS Key Management Service Developer Guide
Viewing a Grant

operation = ['GenerateDataKey']

response = kmsClient.create_grant({
 key_id: keyId,
 grantee_principal: granteePrincipal,
 operations: operation
})

PHP

For details, see the CreateGrant method in the AWS SDK for PHP.

// Create a grant
//
// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
$keyId = 'arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab';
$granteePrincipal = "arn:aws:iam::111122223333:user/Alice";
$operation = ['GenerateDataKey']

$result = $KmsClient->createGrant([
 'GranteePrincipal' => $granteePrincipal,
 'KeyId' => $keyId,
 'Operations' => $operation
]);

Node.js

For details, see the createGrant property in the AWS SDK for JavaScript in Node.js.

// Create a grant
//
// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
const KeyId = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab';
const GranteePrincipal = 'arn:aws:iam::111122223333:user/Alice';
const Operations: ["GenerateDataKey"];
kmsClient.createGrant({ KeyId, GranteePrincipal, Operations }, (err, data) => {
 ...
});

Viewing a Grant
To get detailed information about the grants on an AWS KMS customer master key, use the ListGrants
operation.

This example uses the AWS KMS client object that you created in Creating a Client (p. 314).

Java

For details about the Java implementation, see the listGrants method in the AWS SDK for Java API
Reference.

// Listing grants on a CMK
//
// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
String keyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
Integer limit = 10;

339

https://docs.aws.amazon.com/aws-sdk-php/v3/api/api-kms-2014-11-01.html#creategrant
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/KMS.html#createGrant-property
https://docs.aws.amazon.com/kms/latest/APIReference/API_ListGrants.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/kms/AWSKMSClient.html#listGrants-com.amazonaws.services.kms.model.ListGrantsRequest-

AWS Key Management Service Developer Guide
Viewing a Grant

ListGrantsRequest req = new ListGrantsRequest().withKeyId(keyId).withLimit(limit);
ListGrantsResult result = kmsClient.listGrants(req);

C#

For details, see the ListGrants method in the AWS SDK for .NET.

// Listing grants on a CMK
//
// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
String keyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
int limit = 10;

ListGrantsRequest listGrantsRequest = new ListGrantsRequest()
{
 KeyId = keyId,
 Limit = limit
};
ListGrantsResponse listGrantsResponse = kmsClient.ListGrants(listGrantsRequest);

Python

For details, see the list_grants method in the AWS SDK for Python (Boto 3).

Listing grants on a CMK

Replace the following fictitious CMK ARN with a valid CMK ID or ARN
key_id = 'arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

response = kms_client.list_grants(
 KeyId=key_id,
 Limit=10
)

Ruby

For details, see the list_grants instance method in the AWS SDK for Ruby.

Listing grants on a CMK

Replace the following fictitious CMK ARN with a valid CMK ID or ARN
keyId = 'arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

response = kmsClient.list_grants({
 key_id: keyId,
 limit: 10
})

PHP

For details, see the ListGrants method in the AWS SDK for PHP.

// Listing grants on a CMK
//
// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
$keyId = 'arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab';
$limit = 10;

$result = $KmsClient->listGrants([
 'KeyId' => $keyId,

340

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/KeyManagementService/MKeyManagementServiceListGrantsListGrantsRequest.html
http://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/kms.html#KMS.Client.list_grants
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/KMS/Client.html#list_grants-instance_method
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/KMS.html
https://docs.aws.amazon.com/aws-sdk-php/v3/api/api-kms-2014-11-01.html#listgrants

AWS Key Management Service Developer Guide
Retiring a Grant

 'Limit' => $limit,
]);

Node.js

For details, see the listGrants property in the AWS SDK for JavaScript in Node.js.

// Listing grants on a CMK
//
// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
const KeyId = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab';
const Limit = 10;
kmsClient.listGrants({ KeyId, Limit }, (err, data) => {
 ...
});

Retiring a Grant
To retire a grant for an AWS KMS customer master key, use the RetireGrant operation. You should retire a
grant to clean up after you are done using it.

This example uses the AWS KMS client object that you created in Creating a Client (p. 314).

Java

For details, see the retireGrant method in the AWS SDK for Java API Reference.

// Retire a grant
//
String grantToken = Place your grant token here;

RetireGrantRequest req = new RetireGrantRequest().withGrantToken(grantToken);
kmsClient.retireGrant(req);

C#

For details, see the RetireGrant method in the AWS SDK for .NET.

// Retire a grant
//
String grantToken = "Place your grant token here";

RetireGrantRequest retireGrantRequest = new RetireGrantRequest()
{
 GrantToken = grantToken
};
kmsClient.RetireGrant(retireGrantRequest);

Python

For details, see the retire_grant method in the AWS SDK for Python (Boto 3).

Retire a grant

grant_token = Place your grant token here

response = kms_client.retire_grant(

341

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/KMS.html#listGrants-property
https://docs.aws.amazon.com/kms/latest/APIReference/API_RetireGrant.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/kms/AWSKMSClient.html#retireGrant-com.amazonaws.services.kms.model.RetireGrantRequest-
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/KeyManagementService/MKeyManagementServiceRetireGrantRetireGrantRequest.html
http://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/kms.html#KMS.Client.retire_grant

AWS Key Management Service Developer Guide
Revoking a Grant

 GrantToken=grant_token
)

Ruby

For details, see the retire_grant instance method in the AWS SDK for Ruby.

Retire a grant

grantToken = Place your grant token here

response = kmsClient.retire_grant({
 grant_token: grantToken
})

PHP

For details, see the RetireGrant method in the AWS SDK for PHP.

// Retire a grant
//
$grantToken = 'Place your grant token here';

$result = $KmsClient->retireGrant([
 'GrantToken' => $grantToken,
]);

Node.js

For details, see the retireGrant property in the AWS SDK for JavaScript in Node.js.

// Retire a grant
//
const GrantToken = 'Place your grant token here';
kmsClient.retireGrant({ GrantToken }, (err, data) => {
 ...
});

Revoking a Grant
To revoke a grant to an AWS KMS customer master key, use the RevokeGrant operation. You can revoke a
grant to explicitly deny operations that depend on it.

This example uses the AWS KMS client object that you created in Creating a Client (p. 314).

Java

For details, see the revokeGrant method in the AWS SDK for Java API Reference.

// Revoke a grant on a CMK
//
// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
String keyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
String grantId = "grant1";

RevokeGrantRequest req = new
 RevokeGrantRequest().withKeyId(keyId).withGrantId(grantId);

342

https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/KMS/Client.html#retire_grant-instance_method
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/KMS.html
https://docs.aws.amazon.com/aws-sdk-php/v3/api/api-kms-2014-11-01.html#retiregrant
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/KMS.html#retireGrant-property
https://docs.aws.amazon.com/kms/latest/APIReference/API_RevokeGrant.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/kms/AWSKMSClient.html#revokeGrant-com.amazonaws.services.kms.model.RevokeGrantRequest-

AWS Key Management Service Developer Guide
Revoking a Grant

kmsClient.revokeGrant(req);

C#

For details, see the RevokeGrant method in the AWS SDK for .NET.

// Revoke a grant on a CMK
//
// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
String keyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
String grantId = "grant1";

RevokeGrantRequest revokeGrantRequest = new RevokeGrantRequest()
{
 KeyId = keyId,
 GrantId = grantId
};
kmsClient.RevokeGrant(revokeGrantRequest);

Python

For details, see the revoke_grant method in the AWS SDK for Python (Boto 3).

Revoke a grant on a CMK

Replace the following fictitious CMK ARN with a valid CMK ID or ARN
key_id = 'arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'
grant_id = 'grant1'

response = kms_client.revoke_grant(
 KeyId=key_id,
 GrantId=grant_id
)

Ruby

For details, see the revoke_grant instance method in the AWS SDK for Ruby.

Revoke a grant on a CMK

Replace the following fictitious CMK ARN with a valid CMK ID or ARN
keyId = 'arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'
grantId = 'grant1'

response = kmsClient.revoke_grant({
 key_id: keyId,
 grant_id: grantId
})

PHP

For details, see the RevokeGrant method in the AWS SDK for PHP.

// Revoke a grant on a CMK
//
// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
$keyId = 'arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab';
$grantId = "grant1";

$result = $KmsClient->revokeGrant([

343

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/KeyManagementService/MKeyManagementServiceRevokeGrantRevokeGrantRequest.html
http://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/kms.html#KMS.Client.revoke_grant
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/KMS/Client.html#revoke_grant-instance_method
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/KMS.html
https://docs.aws.amazon.com/aws-sdk-php/v3/api/api-kms-2014-11-01.html#revokegrant

AWS Key Management Service Developer Guide
Working with Aliases

 'KeyId' => $keyId,
 'GrantId' => $grantId,
]);

Node.js

For details, see the revokeGrant property in the AWS SDK for JavaScript in Node.js.

// Revoke a grant on a CMK
//
// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
const KeyId = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab';
const GrantId = 'grant1';
kmsClient.revokeGrant({ GrantId, KeyId }, (err, data) => {
 ...
});

Working with Aliases
The examples in this topic use the AWS KMS API to create, view, update, and delete aliases.

An alias is an optional display name for a customer master key (CMK) (p. 2). Each CMK can have multiple
aliases, but each alias points to only one CMK. The alias name must be unique in the AWS account and
region. To simplify code that runs in multiple regions, you can use the same alias name but point it to a
different CMK in each region.

You can use AWS KMS API operations to list, create, and delete aliases. You can also update an alias,
which associates an existing alias with a different CMK. There is no operation to edit or change an alias
name. If you create an alias for a CMK that already has an alias, the operation creates another alias for
the same CMK. To change an alias name, delete the current alias and then create a new alias for the CMK.

Because an alias is not a property of a CMK, it can be associated with and disassociated from an existing
CMK without changing the properties of the CMK. Deleting an alias does not delete the underlying CMK.

You can use an alias as the value of the KeyId parameter only in the following operations:

• DescribeKey

• Encrypt

• GenerateDataKey

• GenerateDataKeyWithoutPlaintext

• ReEncrypt

Aliases are created in an AWS account and are known only to the account in which you create them. You
cannot use an alias name or alias ARN to identify a CMK in a different AWS account.

To specify an alias, use the alias name or alias ARN, as shown in the following example. In either case, be
sure to prepend "alias/" to the alias name.

// Fully specified ARN
arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias

Topics
• Creating an Alias (p. 345)

344

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/KMS.html#revokeGrant-property

AWS Key Management Service Developer Guide
Creating an Alias

• Listing Aliases (p. 346)
• Updating an Alias (p. 349)
• Deleting an Alias (p. 351)

Creating an Alias
To create an alias, use the CreateAlias operation. The alias must be unique in the account and region. If
you create an alias for a CMK that already has an alias, CreateAlias creates another alias to the same
CMK. It does not replace the existing alias.

You cannot create an alias that begins with aws/. The aws/ prefix is reserved by Amazon Web Services
for AWS managed CMKs (p. 2).

This example uses the AWS KMS client object that you created in Creating a Client (p. 314).

Java

For details, see the createAlias method in the AWS SDK for Java API Reference.

// Create an alias for a CMK
//
String aliasName = "alias/projectKey1";
// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
String targetKeyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

CreateAliasRequest req = new
 CreateAliasRequest().withAliasName(aliasName).withTargetKeyId(targetKeyId);
kmsClient.createAlias(req);

C#

For details, see the CreateAlias method in the AWS SDK for .NET.

// Create an alias for a CMK
//
String aliasName = "alias/projectKey1";
// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
String targetKeyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

CreateAliasRequest createAliasRequest = new CreateAliasRequest()
{
 AliasName = aliasName,
 TargetKeyId = targetKeyId
};
kmsClient.CreateAlias(createAliasRequest);

Python

For details, see the create_alias method in the AWS SDK for Python (Boto 3).

Create an alias for a CMK

alias_name = 'alias/projectKey1'
Replace the following fictitious CMK ARN with a valid CMK ID or ARN
target_key_id = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

345

https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateAlias.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/kms/AWSKMSClient.html#createAlias-com.amazonaws.services.kms.model.CreateAliasRequest-
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/KeyManagementService/MKeyManagementServiceCreateAliasCreateAliasRequest.html
http://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/kms.html#KMS.Client.create_alias

AWS Key Management Service Developer Guide
Listing Aliases

response = kms_client.create_alias(
 AliasName=alias_name,
 TargetKeyId=key_id
)

Ruby

For details, see the create_alias instance method in the AWS SDK for Ruby.

Create an alias for a CMK

aliasName = 'alias/projectKey1'
Replace the following fictitious CMK ARN with a valid CMK ID or ARN
targetKeyId = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

response = kmsClient.create_alias({
 alias_name: aliasName,
 target_key_id: targetKeyId
})

PHP

For details, see the CreateAlias method in the AWS SDK for PHP.

// Create an alias for a CMK
//
$aliasName = "alias/projectKey1";
// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
$keyId = 'arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab';

$result = $KmsClient->createAlias([
 'AliasName' => $aliasName,
 'TargetKeyId' => $keyId,
]);

Node.js

For details, see the createAlias property in the AWS SDK for JavaScript in Node.js.

// Create an alias for a CMK
//
const AliasName = 'alias/projectKey1';

// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
const TargetKeyId = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab';
kmsClient.createAlias({ AliasName, TargetKeyId }, (err, data) => {
 ...
});

Listing Aliases
To list aliases in the account and region, use the ListAliases operation.

By default, the ListAliases command returns all aliases in the account and region. This includes aliases
that you created and associated with your customer managed CMKs (p. 2), and aliases that AWS created
and associated with your AWS managed CMKs (p. 2). The response might also include aliases that have

346

https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/KMS/Client.html#create_alias-instance_method
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/KMS.html
https://docs.aws.amazon.com/aws-sdk-php/latest/api-kms-2014-11-01.html#createalias
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/KMS.html#createAlias-property
https://docs.aws.amazon.com/kms/latest/APIReference/API_ListAliases.html

AWS Key Management Service Developer Guide
Listing Aliases

no TargetKeyId field. These are predefined aliases that AWS has created but has not yet associated
with a CMK.

This example uses the AWS KMS client object that you created in Creating a Client (p. 314).

Java

For details about the Java implementation, see the listAliases method in the AWS SDK for Java API
Reference.

// List the aliases in this AWS account
//
Integer limit = 10;

ListAliasesRequest req = new ListAliasesRequest().withLimit(limit);
ListAliasesResult result = kmsClient.listAliases(req);

C#

For details, see the ListAliases method in the AWS SDK for .NET.

// List the aliases in this AWS account
//
int limit = 10;

ListAliasesRequest listAliasesRequest = new ListAliasesRequest()
{
 Limit = limit
};
ListAliasesResponse listAliasesResponse = kmsClient.ListAliases(listAliasesRequest);

Python

For details, see the list_aliases method in the AWS SDK for Python (Boto 3).

List the aliases in this AWS account

response = kms_client.list_aliases(
 Limit=10
)

Ruby

For details, see the list_aliases instance method in the AWS SDK for Ruby.

List the aliases in this AWS account

response = kmsClient.list_aliases({
 limit: 10
})

PHP

For details, see the List Aliases method in the AWS SDK for PHP.

// List the aliases in this AWS account
//
$limit = 10;

$result = $KmsClient->listAliases([

347

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/kms/AWSKMSClient.html#listAliases-com.amazonaws.services.kms.model.ListAliasesRequest-
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/KeyManagementService/MKeyManagementServiceListAliasesListAliasesRequest.html
http://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/kms.html#KMS.Client.list_aliases
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/KMS/Client.html#list_aliases-instance_method
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/KMS.html
https://docs.aws.amazon.com/aws-sdk-php/latest/api-kms-2014-11-01.html#listaliases

AWS Key Management Service Developer Guide
Listing Aliases

 'Limit' => $limit,
]);

Node.js

For details, see the listAliases property in the AWS SDK for JavaScript in Node.js.

// List the aliases in this AWS account
//
const Limit = 10;
kmsClient.listAliases({ Limit }, (err, data) => {
 ...
});

To list only the aliases that are associated with a particular CMK, use the KeyId parameter. Its value can
be the ID or Amazon Resource Name (ARN) of any CMK in the region. You cannot specify an alias name or
alias ARN.

Java

For details about the Java implementation, see the listAliases method in the AWS SDK for Java API
Reference.

// List the aliases for one CMK
//
// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
String keyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

ListAliasesRequest req = new ListAliasesRequest().withKeyId(keyId);
ListAliasesResult result = kmsClient.listAliases(req);

C#

For details, see the ListAliases method in the AWS SDK for .NET.

// List the aliases for one CMK
//
// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
String keyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

ListAliasesRequest listAliasesRequest = new ListAliasesRequest()
{
 KeyId = keyId
};
ListAliasesResponse listAliasesResponse = kmsClient.ListAliases(listAliasesRequest);

Python

For details, see the list_aliases method in the AWS SDK for Python (Boto 3).

List the aliases for one CMK

Replace the following fictitious CMK ARN with a valid CMK ID or ARN
key_id = 'arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

response = kms_client.list_aliases(
 KeyId=key_id

348

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/KMS.html#listAliases-property
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/kms/AWSKMSClient.html#listAliases-com.amazonaws.services.kms.model.ListAliasesRequest-
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/KeyManagementService/MKeyManagementServiceListAliasesListAliasesRequest.html
http://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/kms.html#KMS.Client.list_aliases

AWS Key Management Service Developer Guide
Updating an Alias

)

Ruby

For details, see the list_aliases instance method in the AWS SDK for Ruby.

List the aliases for one CMK

Replace the following fictitious CMK ARN with a valid CMK ID or ARN
keyId = 'arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

response = kmsClient.list_aliases({
 key_id: keyId
})

PHP

For details, see the List Aliases method in the AWS SDK for PHP.

// List the aliases for one CMK
//
// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
$keyId = 'arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab';

$result = $KmsClient->listAliases([
 'KeyId' => $keyId,
]);

Node.js

For details, see the listAliases property in the AWS SDK for JavaScript in Node.js.

// List the aliases for one CMK
//
// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
const KeyId = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab';
kmsClient.listAliases({ KeyId }, (err, data) => {
 ...
});

Updating an Alias
To associate an existing alias with a different CMK, use the UpdateAlias operation.

This example uses the AWS KMS client object that you created in Creating a Client (p. 314).

Java

For details about the Java implementation, see the updateAlias method in the AWS SDK for Java API
Reference.

// Updating an alias
//
String aliasName = "alias/projectKey1";
// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
String targetKeyId = "arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321";

349

https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/KMS/Client.html#list_aliases-instance_method
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/KMS.html
https://docs.aws.amazon.com/aws-sdk-php/latest/api-kms-2014-11-01.html#listaliases
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/KMS.html#listAliases-property
https://docs.aws.amazon.com/kms/latest/APIReference/API_UpdateAlias.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/kms/AWSKMSClient.html#updateAlias-com.amazonaws.services.kms.model.UpdateAliasRequest-

AWS Key Management Service Developer Guide
Updating an Alias

UpdateAliasRequest req = new UpdateAliasRequest()
 .withAliasName(aliasName)
 .withTargetKeyId(targetKeyId);

kmsClient.updateAlias(req);

C#

For details, see the UpdateAlias method in the AWS SDK for .NET.

// Updating an alias
//
String aliasName = "alias/projectKey1";
// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
String targetKeyId = "arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321";

UpdateAliasRequest updateAliasRequest = new UpdateAliasRequest()
{
 AliasName = aliasName,
 TargetKeyId = targetKeyId
};

kmsClient.UpdateAlias(updateAliasRequest);

Python

For details, see the update_alias method in the AWS SDK for Python (Boto 3).

Updating an alias

alias_name = 'alias/projectKey1'
Replace the following fictitious CMK ARN with a valid CMK ID or ARN
key_id = 'arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321'

response = kms_client.update_alias(
 AliasName=alias_name,
 TargetKeyID=key_id
)

Ruby

For details, see the update_alias instance method in the AWS SDK for Ruby.

Updating an alias

aliasName = 'alias/projectKey1'
Replace the following fictitious CMK ARN with a valid CMK ID or ARN
keyId = 'arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321'

response = kmsClient.update_alias({
 alias_name: aliasName,
 target_key_id: keyId
})

PHP

For details, see the UpdateAlias method in the AWS SDK for PHP.

// Updating an alias
//

350

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/KeyManagementService/MKeyManagementServiceUpdateAliasUpdateAliasRequest.html
http://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/kms.html#KMS.Client.update_alias
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/KMS/Client.html#update_alias-instance_method
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/KMS.html
https://docs.aws.amazon.com/aws-sdk-php/latest/api-kms-2014-11-01.html#updatealias

AWS Key Management Service Developer Guide
Deleting an Alias

$aliasName = "alias/projectKey1";

// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
$keyId = 'arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321';

$result = $KmsClient->updateAlias([
 'AliasName' => $aliasName,
 'TargetKeyId' => $keyId,
]);

Node.js

For details, see the updateAlias property in the AWS SDK for JavaScript in Node.js.

// Updating an alias
//
const AliasName = 'alias/projectKey1';

// Replace the following fictitious CMK ARN with a valid CMK ID or ARN
const TargetKeyId = 'arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321';
kmsClient.updateAlias({ AliasName, TargetKeyId }, (err, data) => {
 ...
});

Deleting an Alias
To delete an alias, use the DeleteAlias operation. Deleting an alias has no effect on the underlying CMK.

This example uses the AWS KMS client object that you created in Creating a Client (p. 314).

Java

For details, see the deleteAlias method in the AWS SDK for Java API Reference.

// Delete an alias for a CMK
//
String aliasName = "alias/projectKey1";

DeleteAliasRequest req = new DeleteAliasRequest().withAliasName(aliasName);
kmsClient.deleteAlias(req);

C#

For details, see the DeleteAlias method in the AWS SDK for .NET.

// Delete an alias for a CMK
//
String aliasName = "alias/projectKey1";

DeleteAliasRequest deleteAliasRequest = new DeleteAliasRequest()
{
 AliasName = aliasName
};
kmsClient.DeleteAlias(deleteAliasRequest);

Python

For details, see the delete_alias method in the AWS SDK for Python (Boto 3).

351

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/KMS.html#updateAlias-property
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeleteAlias.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/kms/AWSKMSClient.html#deleteAlias-com.amazonaws.services.kms.model.DeleteAliasRequest-
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/KeyManagementService/MKeyManagementServiceDeleteAliasDeleteAliasRequest.html
http://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/kms.html#KMS.Client.delete_alias

AWS Key Management Service Developer Guide
Deleting an Alias

Delete an alias for a CMK

alias_name = 'alias/projectKey1'

response = kms_client.delete_alias(
 AliasName=alias_name
)

Ruby

For details, see the delete_alias instance method in the AWS SDK for Ruby.

Delete an alias for a CMK

aliasName = 'alias/projectKey1'

response = kmsClient.delete_alias({
 alias_name: aliasName
})

PHP

For details, see the DeleteAlias method in the AWS SDK for PHP.

// Delete an alias for a CMK
//
$aliasName = "alias/projectKey1";

$result = $KmsClient->deleteAlias([
 'AliasName' => $aliasName,
]);

Node.js

For details, see the deleteAlias property) in the AWS SDK for JavaScript in Node.js.

// Delete an alias for a CMK
//
const AliasName = 'alias/projectKey1';
kmsClient.deleteAlias({ AliasName }, (err, data) => {
 ...
});

352

https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/KMS/Client.html#delete_alias-instance_method
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/KMS.html
https://docs.aws.amazon.com/aws-sdk-php/latest/api-kms-2014-11-01.html#deletealias
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/KMS.html#deleteAlias-property

AWS Key Management Service Developer Guide
Resource Quotas

Quotas
To make AWS KMS responsive and performant for all users, AWS KMS applies two types of quotas. Each
quota is calculated independently for each Region of each AWS account.

Important
If you need to exceed a quota, you can request a quota increase in Service Quotas. Use the
Service Quotas console or the RequestServiceQuotaIncrease operation. For details, see
Requesting a Quota Increase in the Service Quotas User Guide. If Service Quotas for AWS KMS
are not available in the AWS Region, please visit the AWS Support Center and create a case.

• Resource quotas (p. 353): Limit the number of each type of AWS KMS resource.

• Request quotas (p. 355): Limit the number of requests for AWS KMS API operations in a specified
interval.

Resource Quotas
AWS KMS establishes resource quotas to ensure that it can provide fast and resilient service to all of our
customers. Some resource quotas apply only to resources that you create, but not to resources that AWS
services create for you. Resources that you use, but that aren't in your AWS account, such as AWS owned
CMKs (p. 4), do not count against these quotas.

If you have reached a resource limit, requests to create an additional resource of that type generate an
LimitExceededException error message.

The following table lists and describes the AWS KMS resource quotas in each AWS account and Region. If
you need to exceed a quota, you can request a quota increase in Service Quotas. Use the Service Quotas
console or the RequestServiceQuotaIncrease operation. For details, see Requesting a Quota Increase in
the Service Quotas User Guide. If Service Quotas for AWS KMS are not available in the AWS Region, please
visit the AWS Support Center and create a case.

Resource Default Limit Applies To

Customer Master Keys
(CMKs) (p. 354)

10,000 Customer managed CMKs

Aliases (p. 354) 10,000 Customer created aliases

Grants per CMK (p. 354) 10,000 Customer managed CMKs

Grants for a given principal per
CMK (p. 354)

500 Customer managed CMKs

AWS managed CMKs

Key policy document
size (p. 355)

32 KB (32,768 bytes) Customer managed CMKs

AWS managed CMKs

In addition to resource quotas, AWS KMS uses request quotas to ensure the responsiveness of the service.
For details, see the section called “Request Quotas” (p. 355).

353

https://console.aws.amazon.com/servicequotas
https://docs.aws.amazon.com/servicequotas/2019-06-24/apireference/API_RequestServiceQuotaIncrease.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-increase.html
https://console.aws.amazon.com/support/home
https://console.aws.amazon.com/servicequotas
https://console.aws.amazon.com/servicequotas
https://docs.aws.amazon.com/servicequotas/2019-06-24/apireference/API_RequestServiceQuotaIncrease.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-increase.html
https://console.aws.amazon.com/support/home

AWS Key Management Service Developer Guide
Customer Master Keys (CMKs): 10,000

Customer Master Keys (CMKs): 10,000
You can have up to 10,000 customer managed CMKs (p. 3) in each Region of your AWS account. This
quota applies to all symmetric and asymmetric customer managed CMKs regardless of their key
state (p. 223). Each CMK — whether symmetric or asymmetric — is considered to be one resource. AWS
managed CMKs (p. 4) and AWS owned CMKs (p. 4) do not count against this quota.

If you need to exceed this quota, request a quota increase in Service Quotas. However, managing a large
number of CMKs from the AWS Management Console may be slower than acceptable. If you have a
large number of CMKs in an AWS Region, manage them programmatically with the AWS SDKs or AWS
Command Line Tools.

Aliases: 10,000
You can create up to 10,000 aliases in each Region of your account. Aliases that AWS creates in your
account, such as aws/<service-name>, do not count against this quota.

An alias is a display name that you can map to a CMK. Each alias is mapped to exactly one CMK and
multiple aliases can map to the same CMK.

If you increase your CMK resource quota, you might also need to increase your aliases resource quota. For
help with requesting a quota increase, see Requesting a Quota Increase in the Service Quotas User Guide.

Grants per CMK: 10,000
Each customer managed CMK (p. 3) can have up to 10,000 grants, including the grants created by AWS
services that are integrated with AWS KMS. This quota does not apply to AWS managed CMKs (p. 4) or
AWS owned CMKs (p. 4).

One effect of this quota is that you cannot perform more than 10,000 grant-authorized operations that
use the same CMK at the same time. After you reach the quota, you can create new grants on the CMK
only when an active grant is retired or revoked.

For example, when you attach an Amazon Elastic Block Store (Amazon EBS) volume to an Amazon Elastic
Compute Cloud (Amazon EC2) instance, the volume is decrypted so you can read it. To get permission
to decrypt the data, Amazon EBS creates a grant for each volume. However, you cannot have more than
10,000 grants on each CMK. Therefore, if all of your Amazon EBS volumes use the same CMK, you cannot
attach more than 10,000 volumes at one time.

Grants (p. 115) are an alternative to key policy (p. 50). Like a key policy, a grant is attached to a CMK. You
(or an AWS service integrated with AWS KMS) can use a grant to allow a principal to use or manage the
CMK. Each grant includes the principal who receives permission to use the CMK, the ID of the CMK, and a
list of operations that the grantee can perform.

Grants for a Given Principal per CMK: 500
You cannot have more than 500 grants on a CMK that specify the same grantee principal. This quota is
calculated separately for each CMK in the account. It applies to customer managed CMKs (p. 3) and AWS
managed CMKs (p. 4), but not to AWS owned CMKs (p. 4).

For example, when you attach an Amazon Elastic Block Store (Amazon EBS) volume to an Amazon Elastic
Compute Cloud (Amazon EC2) instance, the volume is decrypted so you can read it. To get permission to
decrypt the data, Amazon EBS creates a grant for each volume. Each grant is unique, but all of the grants
have the same grantee principal, a user that assumes a role associated with Amazon EC2 instances.
However, you cannot have more than 500 grants for the same principal on each CMK. Therefore, if all of
your Amazon EBS volumes use the same CMK, you cannot attach more than 500 volumes at one time.

354

https://aws.amazon.com/tools/#sdk
https://aws.amazon.com/tools/#cli
https://aws.amazon.com/tools/#cli
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-increase.html
https://aws.amazon.com/kms/features/#AWS_Service_Integration
https://aws.amazon.com/kms/features/#AWS_Service_Integration

AWS Key Management Service Developer Guide
Key Policy Document Size: 32 KB

Key Policy Document Size: 32 KB
The maximum length of each key policy document is 32 KB (32,768 bytes). If you use a larger policy
document to create or update the key policy for a CMK, the operation fails.

If you must exceed this quota, request a quota increase in Service Quotas. For details, see Requesting a
Quota Increase in the Service Quotas User Guide.

A key policy document (p. 50) is a collection of policy statements in JSON format. The statements in the
key policy document determine who has permission to use the CMK and how they can use it. You may
also use IAM policies and grants to control access to the CMK, but every CMK must have a key policy
document.

You use a key policy document whenever you create or change a key policy by using the default
view (p. 65) or policy view (p. 65) in the AWS Management Console, or the PutKeyPolicy operation. This
quota applies to your key policy document, even if you use the default view (p. 65) in the AWS KMS
console, where you don't edit the JSON statements directly.

Request Quotas
AWS KMS establishes quotas for the number of API operations requested in each second. For a table that
lists the per-second request quota for each API operation, see Request Quotas for Each AWS KMS API
Operation (p. 357).

When you exceed an API request quota, AWS KMS throttles the request, that is, it rejects an otherwise
valid request and returns a ThrottlingException error like the following one. To respond, use a
backoff and retry strategy.

You have exceeded the rate at which you may call KMS. Reduce the frequency of your calls.
(Service: AWSKMS; Status Code: 400; Error Code: ThrottlingException; Request ID: <ID>

The request quotas differ with the API operation, the AWS Region, and other factors, such as the CMK
type.

Note
If you need to exceed a quota, you can request a quota increase in Service Quotas. Use the
Service Quotas console or the RequestServiceQuotaIncrease operation. For details, see
Requesting a Quota Increase in the Service Quotas User Guide. If Service Quotas for AWS KMS
are not available in the AWS Region, please visit the AWS Support Center and create a case.
If you are exceeding the request quota for the GenerateDataKey operation, consider using
the data key caching feature of the AWS Encryption SDK. Reusing data keys might reduce the
frequency of your requests to AWS KMS.

In addition to request quotas, AWS KMS uses resource quotas to ensure capacity for all users. For details,
see Resource Quotas (p. 353).

Topics
• Applying Request Quotas (p. 356)

• Shared Quotas for Cryptographic Operations (p. 356)

• API Requests Made on Your Behalf (p. 356)

• Cross-Account Requests (p. 357)

• Custom Key Store Quotas (p. 357)

• Request Quotas for Each AWS KMS API Operation (p. 357)

355

https://docs.aws.amazon.com/servicequotas/latest/userguide/request-increase.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-increase.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_PutKeyPolicy.html
https://docs.aws.amazon.com/general/latest/gr/api-retries.html
https://console.aws.amazon.com/servicequotas
https://docs.aws.amazon.com/servicequotas/2019-06-24/apireference/API_RequestServiceQuotaIncrease.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-increase.html
https://console.aws.amazon.com/support/home
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/data-key-caching.html

AWS Key Management Service Developer Guide
Applying Request Quotas

Applying Request Quotas
When reviewing request quotas, keep in mind the following information.

• Request quotas apply to both customer managed CMKs (p. 3) and AWS managed CMKs (p. 4). The use
of AWS owned CMKs (p. 4) does not count against request quotas for your AWS account, even when
they are used to protect resources in your account.

• Throttling is based on all requests on CMKs of all types in the Region. This total includes requests from

all principals in the AWS account, including requests from AWS services on your behalf.

• Each request quota is calculated independently. For example, requests for the CreateKey operation

have no effect on the request quota for the CreateAlias operation. If your CreateAlias requests are
throttled, your CreateKey requests can still complete successfully.

• Although cryptographic operations share a quota, the shared quota is calculated independently of

quotas for other operations. For example, calls to the Encrypt and Decrypt operations share a request
quota, but that quota is independent of the quota for management operations, such as EnableKey.
For example, in the Europe (London) Region, you can perform 10,000 cryptographic operations on
symmetric CMKs plus 5 EnableKey operations per second without being throttled.

Shared Quotas for Cryptographic Operations
AWS KMS cryptographic operations share request quotas. These quotas are displayed in the first row of
the Request quotas table (p. 357). The quotas for different types of CMKs are calculated independently.
Each quota applies to all requests for these operations in the AWS account and Region with the given key
type in each one-second interval.

For example, you might be using symmetric CMKs (p. 130) in an AWS Region with a shared quota of
10,000 requests per second. When you make 7,000 GenerateDataKey requests per second and 2,000
Decrypt requests per second, AWS KMS doesn't throttle your requests. However, when you make 9,500
GenerateDataKey requests and 1,000 Encrypt and requests per second, AWS KMS throttles your
requests because they exceed the shared quota.

Similarly, if you are using asymmetric CMKs (p. 130), you can request any combination of the
cryptographic operations that are supported by the CMK, just so the total number of cryptographic
operations doesn't exceed the request quota for that type of CMK. For example, you can make 300
Encrypt requests and 200 Decrypt requests on your RSA-based encryption CMKs without being throttled.

Note
Asymmetric CMKs and asymmetric data key pairs are supported by AWS KMS only in the
following AWS Regions: US East (N. Virginia), US West (Oregon), Asia Pacific (Sydney), Asia
Pacific (Tokyo), and Europe (Ireland).

The quotas for different key types are also calculated independently. For example, in the Asia Pacific
(Singapore) Region, if you use both symmetric and asymmetric CMKs, you can make up to 10,000
calls per second with symmetric CMKs plus up to 500 additional calls per second with your RSA-based
asymmetric CMKs, plus up to 300 additional requests per second with your ECC-based CMKs.

API Requests Made on Your Behalf
You can make API requests directly or by using an integrated AWS service that makes API requests to
AWS KMS on your behalf. The quota applies to both kinds of requests.

356

https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateAlias.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_EnableKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html

AWS Key Management Service Developer Guide
Cross-Account Requests

For example, you might store data in Amazon S3 using server-side encryption with AWS KMS (SSE-KMS).
Each time you upload or download an S3 object that's encrypted with SSE-KMS, Amazon S3 makes a
GenerateDataKey (for uploads) or Decrypt (for downloads) request to AWS KMS on your behalf.
These requests count toward your quota, so AWS KMS throttles the requests if you exceed a combined
total of 5,500 (or 10,000 or 30,000 depending upon your AWS Region) uploads or downloads per second
of S3 objects encrypted with SSE-KMS.

Cross-Account Requests
When an application in one AWS account uses a CMK owned by a different account, it's known as a cross-
account request. For cross-account requests, AWS KMS throttles the account that makes the requests, not
the account that owns the CMK. For example, if an application in account A uses a CMK in account B, the
CMK use applies only to the quotas in account A.

Custom Key Store Quotas
Cryptographic operations that use CMKs in a custom key store (p. 172) share a request quota of 1,800
operations per second for each custom key store. However, not all operations use the quota equally. The
GenerateDataKey, GenerateDataKeyWithoutPlaintext, and GenerateRandom operations use
approximately three times as much of the per-second quota as the Encrypt, Decrypt, and ReEncrypt
operations.

For example, if you are requesting only Encrypt and Decrypt operations, you can perform
approximately 1,800 operations per second. If, instead, you request repeated GenerateDataKey
operations, your performance might be closer to 600 operations per second. For applications patterns
that consist of roughly equal numbers of GenerateDataKey and Decrypt operations, you can expect
about 1,200 operations per second.

Unlike other AWS KMS quotas, you cannot raise the custom key store quota by using Service Quotas or
by creating a case in AWS Support.

Note
If the AWS CloudHSM cluster that is associated with the custom key store is processing
numerous commands, including those unrelated to the custom key store, you might get an AWS
KMS ThrottlingException at a lower-than-expected rate. If this occurs, lower your request
rate to AWS KMS, reduce the unrelated load, or use a dedicated AWS CloudHSM cluster for your
custom key store.

Request Quotas for Each AWS KMS API Operation

API Operation Request Quotas (per second)

Decrypt

Encrypt

GenerateDataKey (symmetric)

GenerateDataKeyWithoutPlaintext
(symmetric)

GenerateRandom

ReEncrypt

Sign (asymmetric)

These shared quotas vary with the AWS Region
and the type of CMK used in the request. Each
quota is calculated separately.

Symmetric CMK quota:

• 5,500 (shared)
• 10,000 (shared) in the following Regions:

• US East (Ohio), us-east-2
• Asia Pacific (Singapore), ap-southeast-1
• Asia Pacific (Sydney), ap-southeast-2
• Asia Pacific (Tokyo), ap-northeast-1
• Europe (Frankfurt), eu-central-1

357

AWS Key Management Service Developer Guide
Request Quotas for Each AWS KMS API Operation

API Operation Request Quotas (per second)

Verify (asymmetric) • Europe (London), eu-west-2
• 30,000 (shared) in the following Regions:

• US East (N. Virginia), us-east-1
• US West (Oregon), us-west-2
• Europe (Ireland), eu-west-1

Asymmetric CMK quota:

• 500 (shared) for RSA CMKs
• 300 (shared) for Elliptic curve (ECC) CMKs

Custom key stores quota:

• 1,800 (shared) for each custom key store. For
details, see Custom Key Store Quotas (p. 357).

CancelKeyDeletion 5

ConnectCustomKeyStore 5

CreateAlias 5

CreateCustomKeyStore 5

CreateGrant 50

CreateKey 5

DeleteAlias 5

DeleteCustomKeyStore 5

DeleteImportedKeyMaterial 5

DescribeCustomKeyStores 5

DescribeKey 100

DisableKey 5

DisableKeyRotation 5

DisconnectCustomKeyStore 5

EnableKey 5

EnableKeyRotation 5

358

AWS Key Management Service Developer Guide
Request Quotas for Each AWS KMS API Operation

API Operation Request Quotas (per second)

GenerateDataKeyPair

GenerateDataKeyPairWithoutPlaintext

These shared quotas vary with the type of data
keys that are requested. Each is calculated
separately.

1 — RSA_2048

0.5 — RSA_3072 (1 in a 2-second interval)

0.1 — RSA_4096 (1 in a 10-second interval)

25 — ECC_NIST_P256

10 — ECC_NIST_P384

5 — ECC_NIST_P521

25 — ECC_SECG_P256K1

GetKeyPolicy 30

GetKeyRotationStatus 30

GetParametersForImport 0.25 (1 in a 4-second interval)

GetPublicKey 5

ImportKeyMaterial 5

ListAliases 100

ListGrants 100

ListKeyPolicies 100

ListKeys 100

ListResourceTags 100

ListRetirableGrants 5

PutKeyPolicy 5

RetireGrant 15

RevokeGrant 15

ScheduleKeyDeletion 5

TagResource 5

UntagResource 5

UpdateAlias 5

UpdateCustomKeyStore 5

UpdateKeyDescription 5

359

AWS Key Management Service Developer Guide
Recent Updates

Document History
This topic describes significant updates to the AWS Key Management Service Developer Guide.

Topics
• Recent Updates (p. 360)
• Earlier Updates (p. 361)

Recent Updates
The following table describes significant changes to this documentation since January 2018. In addition
to major changes listed here, we also update the documentation frequently to improve the descriptions
and examples, and to address the feedback that you send to us. To be notified about significant changes,
use the link in the upper right corner to subscribe to the RSS feed.

Current API version: 2014-11-01

update-history-change update-history-description update-history-date

New feature Added support for asymmetric
customer master keys and
asymmetric data keys.

November 25, 2019

Updated feature You can view the key policy
of AWS managed CMKs in the
AWS KMS console. This feature
used to be limited to customer
managed CMKs.

November 15, 2019

New feature Explains how to use hybrid
post-quantum key exchange
algorithms in TLS for your calls
to AWS KMS.

November 4, 2019

Quota change Increased the resource quotas
for some APIs that manage
CMKs.

September 18, 2019

Quota change Changed the resource quotas for
customer master keys (CMKs),
aliases, and grants per CMK.

March 27, 2019

Quota change Changed the shared per-second
request quota for cryptographic
operations that use customer
master keys (CMKs) in a custom
key store.

March 7, 2019

New feature Explains how to create and
manage AWS KMS custom key
stores. Each key store is backed
by an AWS CloudHSM cluster
that you own and control.

November 26, 2018

360

https://docs.aws.amazon.com/kms/latest/developerguide/symmetric-asymmetric.html.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-policy-viewing.html
https://docs.aws.amazon.com/kms/latest/developerguide/pqtls.html
https://docs.aws.amazon.com/kms/latest/developerguide/pqtls.html
https://docs.aws.amazon.com/kms/latest/developerguide/pqtls.html
https://docs.aws.amazon.com/kms/latest/developerguide/limits.html
https://docs.aws.amazon.com/kms/latest/developerguide/limits.html
https://docs.aws.amazon.com/kms/latest/developerguide/limits.html#rps-key-stores
https://docs.aws.amazon.com/kms/latest/developerguide/custom-key-store-overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/custom-key-store-overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/custom-key-store-overview.html

AWS Key Management Service Developer Guide
Earlier Updates

New console Explains how to use the new
AWS KMS console, which is
independent of the IAM console.
The original console, and
instructions for using it, will
remain available for a brief
period to give you time to
familiarize yourself with the new
console.

November 7, 2018

Quota change Changed the shared request
quota for use of customer
master keys.

August 21, 2018

New content Explains how AWS Secrets
Manager uses AWS KMS
customer master keys to encrypt
the secret value in a secret.

July 13, 2018

New content Explains how DynamoDB uses
AWS KMS customer master
keys to support its server-side
encryption option.

May 23, 2018

New feature Explains how to use a private
endpoint in your VPC to connect
directly to AWS KMS, instead of
connecting over the internet.

January 22, 2018

Earlier Updates
The following table describes the important changes to the AWS Key Management Service Developer
Guide prior to 2018.

Change Description Date

New content Added documentation about
Tagging Keys (p. 39).

February 15, 2017

New content Added documentation
about Monitoring Customer
Master Keys (p. 286) and
Monitoring with Amazon
CloudWatch (p. 287).

August 31, 2016

New content Added documentation about
Importing Key Material (p. 147).

August 11, 2016

New content Added the following
documentation: Overview
of Managing Access (p. 47),
Using IAM Policies (p. 67),
AWS KMS API Permissions
Reference (p. 76), and Using
Policy Conditions (p. 86).

July 5, 2016

361

https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html#create-keys-console
https://docs.aws.amazon.com/kms/latest/developerguide/limits.html#requests-per-second
https://docs.aws.amazon.com/kms/latest/developerguide/limits.html#requests-per-second
https://docs.aws.amazon.com/kms/latest/developerguide/limits.html#requests-per-second
https://docs.aws.amazon.com/kms/latest/developerguide/services-secrets-manager.html
https://docs.aws.amazon.com/kms/latest/developerguide/services-secrets-manager.html
https://docs.aws.amazon.com/kms/latest/developerguide/services-secrets-manager.html
https://docs.aws.amazon.com/kms/latest/developerguide/services-dynamodb.html
https://docs.aws.amazon.com/kms/latest/developerguide/services-dynamodb.html
https://docs.aws.amazon.com/kms/latest/developerguide/services-dynamodb.html
https://docs.aws.amazon.com/kms/latest/developerguide/kms-vpc-endpoint.html
https://docs.aws.amazon.com/kms/latest/developerguide/kms-vpc-endpoint.html
https://docs.aws.amazon.com/kms/latest/developerguide/kms-vpc-endpoint.html

AWS Key Management Service Developer Guide
Earlier Updates

Change Description Date

Update Updated portions of the
documentation in the
Authentication and Access
Control (p. 46) chapter.

July 5, 2016

Update Updated the Quotas (p. 353)
page to reflect new default
quotas.

May 31, 2016

Update Updated the Quotas (p. 353)
page to reflect new default
quotas, and updated the Grant
Tokens (p. 16) documentation to
improve clarity and accuracy.

April 11, 2016

New content Added documentation about
Allowing Multiple IAM Users to
Access a CMK (p. 66) and Using
the IP Address Condition (p. 87).

February 17, 2016

Update Updated the Using Key Policies
in AWS KMS (p. 50) and
Changing a Key Policy (p. 64)
pages to improve clarity and
accuracy.

February 17, 2016

Update Updated the Getting
Started (p. 17) topic pages to
improve clarity.

January 5, 2016

New content Added documentation about
How AWS CloudTrail Uses AWS
KMS (p. 228).

November 18, 2015

New content Added instructions for Changing
a Key Policy (p. 64).

November 18, 2015

Update Updated the documentation
about How Amazon Relational
Database Service (Amazon RDS)
Uses AWS KMS (p. 254).

November 18, 2015

New content Added documentation about
How Amazon WorkSpaces Uses
AWS KMS (p. 282).

November 6, 2015

Update Updated the Using Key Policies
in AWS KMS (p. 50) page to
improve clarity.

October 22, 2015

362

AWS Key Management Service Developer Guide
Earlier Updates

Change Description Date

New content Added documentation about
Deleting Customer Master
Keys (p. 160), including
supporting documentation
about Creating an Amazon
CloudWatch Alarm (p. 165) and
Determining Past Usage of a
Customer Master Key (p. 169).

October 15, 2015

New content Added documentation about
Determining Access to an
AWS KMS Customer Master
Key (p. 118).

October 15, 2015

New content Added documentation about
How Key State Affects Use of a
Customer Master Key (p. 223).

October 15, 2015

New content Added documentation about
How Amazon Simple Email
Service (Amazon SES) Uses AWS
KMS (p. 262).

October 1, 2015

Update Updated the Quotas (p. 353)
page to explain the new request
quotas.

August 31, 2015

New content Added information about the
charges for using AWS KMS. See
AWS KMS Pricing (p. 2).

August 14, 2015

New content Added request quotas to the
AWS KMS Quotas (p. 353).

June 11, 2015

New content Added a new Java code sample
demonstrating use of the
UpdateAlias operation. See
Updating an Alias (p. 349).

June 1, 2015

Update Moved the AWS Key
Management Service regions
table to the AWS General
Reference.

May 29, 2015

New content Added documentation about
How Amazon EMR Uses AWS
KMS (p. 249).

January 28, 2015

New content Added documentation about
How Amazon WorkMail Uses
AWS KMS (p. 276).

January 28, 2015

New content Added documentation about
How Amazon Relational
Database Service (Amazon RDS)
Uses AWS KMS (p. 254).

January 6, 2015

363

https://docs.aws.amazon.com/kms/latest/APIReference/API_UpdateAlias.html
https://docs.aws.amazon.com/general/latest/gr/rande.html#kms_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#kms_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#kms_region

AWS Key Management Service Developer Guide
Earlier Updates

Change Description Date

New content Added documentation about
How Amazon Elastic Transcoder
Uses AWS KMS (p. 245).

November 24, 2014

New guide Introduced the AWS Key
Management Service Developer
Guide.

November 12, 2014

364

	AWS Key Management Service
	Table of Contents
	What is AWS Key Management Service?
	AWS Key Management Service Concepts
	Customer Master Keys (CMKs)
	Customer Managed CMKs
	AWS Managed CMKs
	AWS Owned CMKs

	Data Keys
	Create a Data Key
	Encrypt Data with a Data Key
	Decrypt Data with a Data Key

	Data Key Pairs
	Create a Data Key Pair
	Encrypt Data with a Data Key Pair
	Decrypt Data with a Data Key Pair
	Sign Messages with a Data Key Pair
	Verify a Signature with a Data Key Pair

	Key Spec
	Key Usage
	Envelope Encryption
	Encryption Context
	Encryption Context in Policies
	Encryption Context in Grants
	Logging Encryption Context
	Storing Encryption Context

	Key Policies
	Grants
	Grant Tokens
	Auditing CMK Usage
	Key Management Infrastructure

	Getting Started
	Creating Keys
	Creating Symmetric CMKs
	Creating Symmetric CMKs (Console)
	Creating Symmetric CMKs (KMS API)

	Creating Asymmetric CMKs
	Creating Asymmetric CMKs (Console)
	Creating Asymmetric CMKs (KMS API)

	Viewing Keys
	Viewing CMKs in the Console
	Navigating to the Key Tables
	Sorting and Filtering Your CMKs
	Displaying CMK Details
	Customizing Your CMK Tables
	Suggested CMK Table Configurations

	Viewing CMKs with the API
	ListKeys: Get the ID and ARN of All CMKs
	DescribeKey: Get Detailed Information About a CMK
	GetKeyPolicy: Get the Key Policy Attached to a CMK
	ListAliases: View CMKs by Alias Name

	Finding the Key ID and ARN
	To find the CMK ID and ARN (Console)
	To find the CMK ID and ARN (KMS API)

	Identifying Symmetric and Asymmetric CMKs
	Finding the Key Type in the CMK Table
	Finding the Key Type on the Details Page
	Finding the Key Spec Using the AWS KMS API

	Editing Keys
	Editing CMKs (Console)
	Editing CMKs (KMS API)
	UpdateKeyDescription: Change the Description of a CMK
	PutKeyPolicy: Change the Key Policy for a CMK
	Enable and Disable Key Rotation

	Tagging Keys
	Managing CMK Tags (Console)
	Managing CMK Tags (KMS API)
	TagResource: Add or Change Tags for a CMK
	ListResourceTags: Get the Tags for a CMK
	UntagResource: Delete Tags from a CMK

	Enabling and Disabling Keys
	Enabling and Disabling CMKs (Console)
	Enabling and Disabling CMKs (KMS API)

	Downloading Public Keys
	Special Considerations for Downloading Public Keys
	Downloading a Public Key (Console)
	Downloading a Public Key (KMS API)

	Authentication and Access Control for AWS KMS
	Authentication
	Access Control
	Overview of Managing Access to Your AWS KMS Resources
	AWS KMS Resources and Operations
	Managing Access to AWS KMS CMKs
	Specifying Permissions in a Policy
	Specifying Conditions in a Policy

	Using Key Policies in AWS KMS
	Overview of Key Policies
	Default Key Policy
	Allows Access to the AWS Account and Enables IAM Policies
	Allows Key Administrators to Administer the CMK
	Allows Key Users to Use the CMK
	Allows Key Users to Use a CMK for Cryptographic Operations
	Allows Key Users to Use the CMK with AWS Services

	Example Key Policy
	Viewing a Key Policy
	Viewing a Key Policy (Console)
	Viewing a Key Policy (KMS API)

	Changing a Key Policy
	How to Change a Key Policy
	Using the AWS Management Console Default View
	Using the AWS Management Console Policy View
	Using the AWS KMS API

	Allowing Multiple IAM Users to Access a CMK

	Keeping Key Policies Up to Date
	Determining whether a newer version of the default key policy is available
	Upgrading to the latest version of the default key policy
	Changes to the Default Key Policy

	Using IAM Policies with AWS KMS
	Overview of IAM Policies
	Permissions Required to Use the AWS KMS Console
	AWS Managed (Predefined) Policies for AWS KMS
	Customer Managed Policy Examples
	Allow a User Read-Only Access to All CMKs through the AWS KMS Console
	Allow a User to Encrypt and Decrypt with Any CMK in a Specific AWS Account
	Allow a User to Encrypt and Decrypt with Any CMK in a Specific AWS Account and Region
	Allow a User to Encrypt and Decrypt with Specific CMKs
	Prevent a User from Disabling or Deleting Any CMKs

	Allowing Users in Other Accounts to Use a CMK
	Step 1: Add a Key Policy Statement in the Local Account
	Step 2: Add IAM Policies in the External Account
	Creating CMKs that Other Accounts Can Use
	Using External CMKs with AWS Services

	AWS KMS API Permissions: Actions and Resources Reference
	Using Policy Conditions with AWS KMS
	AWS Global Condition Keys
	Using the IP Address Condition in Policies with AWS KMS Permissions
	Using VPC Endpoint Conditions in Policies with AWS KMS Permissions

	AWS KMS Condition Keys
	kms:BypassPolicyLockoutSafetyCheck
	kms:CallerAccount
	kms:CustomerMasterKeySpec
	kms:CustomerMasterKeyUsage
	kms:DataKeyPairSpec
	kms:EncryptionAlgorithm
	kms:EncryptionContext:
	Requiring multiple encryption context pairs
	Case sensitivity of the encryption context condition
	Using variables in an encryption context condition

	kms:EncryptionContextKeys
	kms:ExpirationModel
	kms:GrantConstraintType
	kms:GrantIsForAWSResource
	kms:GrantOperations
	kms:GranteePrincipal
	kms:KeyOrigin
	kms:MessageType
	kms:ReEncryptOnSameKey
	kms:RetiringPrincipal
	kms:SigningAlgorithm
	kms:ValidTo
	kms:ViaService
	kms:WrappingAlgorithm
	kms:WrappingKeySpec

	Using Grants
	Create a Grant
	Grants for Symmetric and Asymmetric CMKs
	Grant Constraints
	Authorizing CreateGrant in a Key Policy
	Granting CreateGrant Permission

	Using Service-Linked Roles for AWS KMS
	Service-Linked Role Permissions for AWS KMS Custom Key Stores

	Determining Access to an AWS KMS Customer Master Key
	Examining the Key Policy
	Examining IAM Policies
	Examining IAM Policies with the IAM Policy Simulator
	Examining IAM Policies with the IAM API

	Examining Grants
	Troubleshooting Key Access
	Example 1: User Is Denied Access to a CMK in Their AWS Account
	Example 2: User Assumes Role with Permission to Use a CMK in a Different AWS Account

	Using Symmetric and Asymmetric Keys
	About Symmetric and Asymmetric CMKs
	Symmetric Customer Master Keys
	Asymmetric Customer Master Keys

	How to Choose Your CMK Configuration
	Selecting the Key Usage
	Selecting the Key Spec
	SYMMETRIC_DEFAULT Key Spec
	RSA Key Specs
	RSA Key Specs For Encryption and Decryption
	RSA Key Specs For Signing and Verification

	Elliptic Curve Key Specs

	Viewing the Cryptographic Configuration of CMKs
	Comparing Symmetric and Asymmetric CMKs

	Rotating Customer Master Keys
	How Automatic Key Rotation Works
	How to Enable and Disable Automatic Key Rotation
	Enabling and Disabling Key Rotation (Console)
	Enabling and Disabling Key Rotation (KMS API)

	Rotating Keys Manually

	Importing Key Material in AWS Key Management Service (AWS KMS)
	About Imported Key Material
	How To Import Key Material
	How to Reimport Key Material
	How to Identify CMKs with Imported Key Material
	To identify the value of the Origin property of CMKs (Console)
	To identify the value of the Origin property of CMKs (KMS API)

	Importing Key Material Step 1: Create an AWS KMS Customer Master Key (CMK) With No Key Material
	Creating a CMK with No Key Material (Console)
	Creating a CMK with No Key Material (KMS API)

	Importing Key Material Step 2: Download the Public Key and Import Token
	Downloading the Public Key and Import Token (Console)
	Downloading the Public Key and Import Token (KMS API)

	Importing Key Material Step 3: Encrypt the Key Material
	Example: Encrypt Key Material with OpenSSL

	Importing Key Material Step 4: Import the Key Material
	Import Key Material (Console)
	Import Key Material (KMS API)

	Deleting Imported Key Material
	How Deleting Key Material Affects AWS Services Integrated With AWS KMS
	Delete Key Material (Console)
	Delete Key Material (KMS API)

	Deleting Customer Master Keys
	How Deleting Customer Master Keys Works
	Deleting Asymmetric CMKs
	How Deleting Customer Master Keys Affects AWS Services Integrated With AWS KMS

	Scheduling and Canceling Key Deletion
	Scheduling and Canceling Key Deletion (Console)
	Scheduling and Canceling Key Deletion (AWS CLI)
	Scheduling and Canceling Key Deletion (AWS SDK for Java)

	Adding Permission to Schedule and Cancel Key Deletion
	Adding Permission to Schedule and Cancel Key Deletion (Console)
	Adding Permission to Schedule and Cancel Key Deletion (AWS CLI)

	Creating an Amazon CloudWatch Alarm to Detect Usage of a Customer Master Key that is Pending Deletion
	Requirements for a CloudWatch Alarm
	Create the CloudWatch Alarm

	Determining Past Usage of a Customer Master Key
	Examining CMK Permissions to Determine the Scope of Potential Usage
	Examining AWS CloudTrail Logs to Determine Actual Usage

	Using a Custom Key Store
	What is a Custom Key Store?
	AWS KMS Custom Key Store
	AWS CloudHSM Cluster
	kmsuser Crypto User
	CMKs in a Custom Key Store

	Controlling Access to Your Custom Key Store
	Authorizing Custom Key Store Managers and Users
	Authorizing AWS KMS to Manage AWS CloudHSM and Amazon EC2 Resources
	About the AWS KMS Service-Linked Role
	Create the Service-Linked Role
	Edit the Service-Linked Role Description
	Delete the Service-Linked Role

	Creating a Custom Key Store
	Assemble the Prerequisites
	Create a Custom Key Store (Console)
	Create a Custom Key Store (API)

	Managing a Custom Key Store
	Viewing a Custom Key Store
	View a Custom Key Store (Console)
	View a Custom Key Store (API)

	Editing Custom Key Store Settings
	Edit a Custom Key Store (Console)
	Edit a Custom Key Store (API)

	Connecting and Disconnecting a Custom Key Store
	Connect a Custom Key Store (Console)
	Connect a Custom Key Store (API)
	Disconnect a Custom Key Store (Console)
	Disconnect a Custom Key Store (API)

	Deleting a Custom Key Store
	Delete a Custom Key Store (Console)
	Delete a Custom Key Store (API)

	Managing CMKs in a Custom Key Store
	Creating CMKs in a Custom Key Store
	Create a CMK in a Custom Key Store (Console)
	Create a CMK in a Custom Key Store (API)

	Viewing CMKs in a Custom Key Store
	Using CMKs in a Custom Key Store
	Finding CMKs and Key Material
	Find the CMKs in a Custom Key Store
	To find the CMKs in a custom key store (Console)
	To find the CMKs in a custom key store (API)

	Find All Keys for a Custom Key Store
	Find the CMK for a Key
	Find the Key for a CMK

	Scheduling Deletion of CMKs from a Custom Key Store

	Troubleshooting a Custom Key Store
	How to Fix Unavailable CMKs
	How to Fix a Failing CMK
	How to Fix a Connection Failure
	How to Fix Invalid kmsuser Credentials
	How to Delete Orphaned Key Material
	How to Recover Deleted Key Material for a CMK
	How to Log in as kmsuser
	How to Disconnect and Log In
	How to Log Out and Reconnect

	Connecting to AWS KMS Through a VPC Endpoint
	Create an AWS KMS VPC Endpoint
	Creating an AWS KMS VPC Endpoint (VPC Console)
	Creating an AWS KMS VPC Endpoint (AWS CLI)

	Connecting to an AWS KMS VPC Endpoint
	Using a VPC Endpoint in a Policy Statement
	Audit the CMK Use for your VPC

	Using Hybrid Post-Quantum TLS with AWS KMS
	About Hybrid Post-Quantum Key Exchange in TLS
	Using Hybrid Post-Quantum TLS with AWS KMS
	How to Configure Hybrid Post-Quantum TLS
	Testing Hybrid Post-Quantum TLS with AWS KMS
	Learn More About Post-Quantum TLS in AWS KMS

	How Key State Affects Use of a Customer Master Key
	How AWS Services use AWS KMS
	How AWS CloudTrail Uses AWS KMS
	Understanding When Your CMK is Used
	You Configure CloudTrail to Encrypt Log Files with Your Customer Master Key (CMK)
	CloudTrail Puts a Log File into Your S3 Bucket
	You Get an Encrypted Log File from Your S3 Bucket

	Understanding How Often Your CMK is Used

	How Amazon DynamoDB Uses AWS KMS
	Using CMKs and Data Keys
	Authorizing Use of Your CMK
	AWS Managed CMK Key Policy
	Customer Managed CMK Key Policy
	Using Grants to Authorize DynamoDB

	DynamoDB Encryption Context
	Monitoring DynamoDB Interaction with AWS KMS

	How Amazon Elastic Block Store (Amazon EBS) Uses AWS KMS
	Amazon EBS Encryption
	Using CMKs and Data Keys
	Amazon EBS Encryption Context
	Detecting Amazon EBS Failures
	Using AWS CloudFormation to Create Encrypted Amazon EBS Volumes

	How Amazon Elastic Transcoder Uses AWS KMS
	Encrypting the input file
	Decrypting the input file
	Encrypting the output file
	HLS Content Protection
	Elastic Transcoder Encryption Context

	How Amazon EMR Uses AWS KMS
	Encrypting Data on the EMR File System (EMRFS)
	Process for Encrypting Data on EMRFS with SSE-KMS
	Process for Encrypting Data on EMRFS with CSE-KMS

	Encrypting Data on the Storage Volumes of Cluster Nodes
	Encryption Context
	Encryption Context for EMRFS Encryption with SSE-KMS
	Encryption Context for EMRFS Encryption with CSE-KMS
	Encryption Context for Local Disk Encryption with LUKS

	How Amazon Redshift Uses AWS KMS
	Amazon Redshift Encryption
	Encryption Context

	How Amazon Relational Database Service (Amazon RDS) Uses AWS KMS
	Amazon RDS Encryption Context

	How AWS Secrets Manager Uses AWS KMS
	Protecting the Secret Value
	Encrypting and Decrypting Secrets
	An AWS KMS CMK for Each Secret
	A Unique Data Key for Each Secret Value
	Encrypting a Secret Value
	Decrypting a Secret Value

	Using Your AWS KMS CMK
	Authorizing Use of the CMK
	Key Policy of the AWS Managed CMK

	Secrets Manager Encryption Context
	Monitoring Secrets Manager Interaction with AWS KMS

	How Amazon Simple Email Service (Amazon SES) Uses AWS KMS
	Overview of Amazon SES Encryption Using AWS KMS
	Amazon SES Encryption Context
	Giving Amazon SES Permission to Use Your AWS KMS Customer Master Key (CMK)
	Getting and Decrypting Email Messages

	How Amazon Simple Storage Service (Amazon S3) Uses AWS KMS
	Server-Side Encryption: Using SSE-KMS
	Using the Amazon S3 Encryption Client
	Encryption Context

	How AWS Systems Manager Parameter Store Uses AWS KMS
	Protecting Standard Secure String Parameters
	Encrypt a Standard Parameter
	Decrypt a Standard Parameters

	Protecting Advanced Secure String Parameters
	Encrypt an Advanced Parameter
	Decrypt an Advanced Parameter

	Setting Permissions to Encrypt and Decrypt Parameter Values
	Parameter Store Encryption Context
	Troubleshooting CMK Issues in Parameter Store

	How Amazon WorkMail Uses AWS KMS
	Amazon WorkMail Overview
	Amazon WorkMail Encryption
	A CMK for the Organization
	A Unique Encryption Key for Each Mailbox
	A Unique Encryption Key for Each Message
	Creating a New Mailbox
	Encrypting a Mailbox Message
	Decrypting a Mailbox Message
	Caching Mailbox Keys

	Authorizing Use of the CMK
	Amazon WorkMail Encryption Context
	Monitoring Amazon WorkMail Interaction with AWS KMS
	Encrypt
	Decrypt

	How Amazon WorkSpaces Uses AWS KMS
	Overview of Amazon WorkSpaces Encryption Using AWS KMS
	Amazon WorkSpaces Encryption Context
	Giving Amazon WorkSpaces Permission to Use A CMK On Your Behalf
	Part 1: Adding WorkSpaces Administrators to a CMK's Key Users
	To add WorkSpaces administrators as key users for a CMK (Console)
	To add WorkSpaces administrators as key users for a CMK (KMS API)

	Part 2: Giving WorkSpaces Administrators Extra Permissions

	Monitoring Customer Master Keys
	Monitoring Tools
	Automated Monitoring Tools
	Manual Monitoring Tools

	Monitoring with Amazon CloudWatch
	AWS KMS Metrics and Dimensions
	AWS KMS Metrics
	Dimensions for AWS KMS Metrics
	How Do I View AWS KMS Metrics?

	Creating CloudWatch Alarms to Monitor AWS KMS Metrics
	Create a CloudWatch Alarm to Monitor the Expiration of Imported Key Material
	Create a CloudWatch Alarm to Monitor Usage of CMKs that are Pending Deletion

	AWS KMS Events
	KMS CMK Rotation
	KMS Imported Key Material Expiration
	KMS CMK Deletion

	Logging AWS KMS API Calls with AWS CloudTrail
	AWS KMS Information in CloudTrail
	Excluding AWS KMS Events from a Trail
	Understanding AWS KMS Log File Entries
	CreateAlias
	CreateGrant
	CreateKey
	Decrypt
	DeleteAlias
	DescribeKey
	DisableKey
	EnableKey
	Encrypt
	GenerateDataKey
	GenerateDataKeyWithoutPlaintext
	GenerateRandom
	GetKeyPolicy
	ListAliases
	ListGrants
	ReEncrypt
	Amazon EC2 Example One
	Amazon EC2 Example Two

	Programming the AWS KMS API
	Creating a Client
	Working With Keys
	Creating a Customer Master Key
	Generating a Data Key
	Viewing a Custom Master Key
	Getting Key IDs and Key ARNs of Customer Master Keys
	Enabling Customer Master Keys
	Disabling Customer Master Keys

	Encrypting and Decrypting Data Keys
	Encrypting a Data Key
	Decrypting a Data Key
	Re-Encrypting a Data Key Under a Different Customer Master Key

	Working with Key Policies
	Listing Key Policy Names
	Getting a Key Policy
	Setting a Key Policy

	Working with Grants
	Creating a Grant
	Viewing a Grant
	Retiring a Grant
	Revoking a Grant

	Working with Aliases
	Creating an Alias
	Listing Aliases
	Updating an Alias
	Deleting an Alias

	Quotas
	Resource Quotas
	Customer Master Keys (CMKs): 10,000
	Aliases: 10,000
	Grants per CMK: 10,000
	Grants for a Given Principal per CMK: 500
	Key Policy Document Size: 32 KB

	Request Quotas
	Applying Request Quotas
	Shared Quotas for Cryptographic Operations
	API Requests Made on Your Behalf
	Cross-Account Requests
	Custom Key Store Quotas
	Request Quotas for Each AWS KMS API Operation

	Document History
	Recent Updates
	Earlier Updates

